{"title":"引入可扰动性评分(Perturb-ability Score,PS)以增强 ML-NIDS 抵抗逃避式恶意攻击的鲁棒性","authors":"Mohamed elShehaby, Ashraf Matrawy","doi":"arxiv-2409.07448","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel Perturb-ability Score (PS) that can be used to\nidentify Network Intrusion Detection Systems (NIDS) features that can be easily\nmanipulated by attackers in the problem-space. We demonstrate that using PS to\nselect only non-perturb-able features for ML-based NIDS maintains detection\nperformance while enhancing robustness against adversarial attacks.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing Perturb-ability Score (PS) to Enhance Robustness Against Evasion Adversarial Attacks on ML-NIDS\",\"authors\":\"Mohamed elShehaby, Ashraf Matrawy\",\"doi\":\"arxiv-2409.07448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel Perturb-ability Score (PS) that can be used to\\nidentify Network Intrusion Detection Systems (NIDS) features that can be easily\\nmanipulated by attackers in the problem-space. We demonstrate that using PS to\\nselect only non-perturb-able features for ML-based NIDS maintains detection\\nperformance while enhancing robustness against adversarial attacks.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种新颖的可扰动性评分(Perturb-ability Score,PS),可用于识别问题空间中容易被攻击者操纵的网络入侵检测系统(NIDS)特征。我们证明,使用 PS 只为基于 ML 的网络入侵检测系统选择不可扰动特征,既能保持检测性能,又能增强对抗恶意攻击的鲁棒性。
Introducing Perturb-ability Score (PS) to Enhance Robustness Against Evasion Adversarial Attacks on ML-NIDS
This paper proposes a novel Perturb-ability Score (PS) that can be used to
identify Network Intrusion Detection Systems (NIDS) features that can be easily
manipulated by attackers in the problem-space. We demonstrate that using PS to
select only non-perturb-able features for ML-based NIDS maintains detection
performance while enhancing robustness against adversarial attacks.