确保大型语言模型的安全:应对偏见、错误信息和提示性攻击

Benji Peng, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Junyu Liu, Qian Niu
{"title":"确保大型语言模型的安全:应对偏见、错误信息和提示性攻击","authors":"Benji Peng, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Junyu Liu, Qian Niu","doi":"arxiv-2409.08087","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) demonstrate impressive capabilities across\nvarious fields, yet their increasing use raises critical security concerns.\nThis article reviews recent literature addressing key issues in LLM security,\nwith a focus on accuracy, bias, content detection, and vulnerability to\nattacks. Issues related to inaccurate or misleading outputs from LLMs is\ndiscussed, with emphasis on the implementation from fact-checking methodologies\nto enhance response reliability. Inherent biases within LLMs are critically\nexamined through diverse evaluation techniques, including controlled input\nstudies and red teaming exercises. A comprehensive analysis of bias mitigation\nstrategies is presented, including approaches from pre-processing interventions\nto in-training adjustments and post-processing refinements. The article also\nprobes the complexity of distinguishing LLM-generated content from\nhuman-produced text, introducing detection mechanisms like DetectGPT and\nwatermarking techniques while noting the limitations of machine learning\nenabled classifiers under intricate circumstances. Moreover, LLM\nvulnerabilities, including jailbreak attacks and prompt injection exploits, are\nanalyzed by looking into different case studies and large-scale competitions\nlike HackAPrompt. This review is concluded by retrospecting defense mechanisms\nto safeguard LLMs, accentuating the need for more extensive research into the\nLLM security field.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks\",\"authors\":\"Benji Peng, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Junyu Liu, Qian Niu\",\"doi\":\"arxiv-2409.08087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) demonstrate impressive capabilities across\\nvarious fields, yet their increasing use raises critical security concerns.\\nThis article reviews recent literature addressing key issues in LLM security,\\nwith a focus on accuracy, bias, content detection, and vulnerability to\\nattacks. Issues related to inaccurate or misleading outputs from LLMs is\\ndiscussed, with emphasis on the implementation from fact-checking methodologies\\nto enhance response reliability. Inherent biases within LLMs are critically\\nexamined through diverse evaluation techniques, including controlled input\\nstudies and red teaming exercises. A comprehensive analysis of bias mitigation\\nstrategies is presented, including approaches from pre-processing interventions\\nto in-training adjustments and post-processing refinements. The article also\\nprobes the complexity of distinguishing LLM-generated content from\\nhuman-produced text, introducing detection mechanisms like DetectGPT and\\nwatermarking techniques while noting the limitations of machine learning\\nenabled classifiers under intricate circumstances. Moreover, LLM\\nvulnerabilities, including jailbreak attacks and prompt injection exploits, are\\nanalyzed by looking into different case studies and large-scale competitions\\nlike HackAPrompt. This review is concluded by retrospecting defense mechanisms\\nto safeguard LLMs, accentuating the need for more extensive research into the\\nLLM security field.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)在各个领域都展现出了令人印象深刻的能力,然而它们越来越多的使用却引发了严重的安全问题。本文回顾了近期有关 LLM 安全关键问题的文献,重点关注准确性、偏差、内容检测和易受攻击性。本文讨论了与 LLM 不准确或误导性输出有关的问题,重点是如何采用事实检查方法来提高响应的可靠性。通过不同的评估技术,包括受控输入研究和红队演习,对 LLM 中固有的偏见进行了批判性审查。文章全面分析了偏差缓解策略,包括从预处理干预到训练中调整和后处理完善等方法。文章还探讨了区分 LLM 生成的内容与人工生成的文本的复杂性,介绍了 DetectGPT 和水印技术等检测机制,同时指出了机器学习分类器在复杂情况下的局限性。此外,通过研究不同的案例研究和 HackAPrompt 等大型竞赛,分析了包括越狱攻击和提示注入漏洞在内的 LLM 漏洞。本综述最后回顾了保护 LLM 的防御机制,强调了在 LLM 安全领域开展更广泛研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns. This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks. Issues related to inaccurate or misleading outputs from LLMs is discussed, with emphasis on the implementation from fact-checking methodologies to enhance response reliability. Inherent biases within LLMs are critically examined through diverse evaluation techniques, including controlled input studies and red teaming exercises. A comprehensive analysis of bias mitigation strategies is presented, including approaches from pre-processing interventions to in-training adjustments and post-processing refinements. The article also probes the complexity of distinguishing LLM-generated content from human-produced text, introducing detection mechanisms like DetectGPT and watermarking techniques while noting the limitations of machine learning enabled classifiers under intricate circumstances. Moreover, LLM vulnerabilities, including jailbreak attacks and prompt injection exploits, are analyzed by looking into different case studies and large-scale competitions like HackAPrompt. This review is concluded by retrospecting defense mechanisms to safeguard LLMs, accentuating the need for more extensive research into the LLM security field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信