Alexander Kalinin, Thilo Meyer-Brandis, Frank Proske
{"title":"任意时刻麦金-弗拉索夫随机微分方程解的稳定性、唯一性和存在性","authors":"Alexander Kalinin, Thilo Meyer-Brandis, Frank Proske","doi":"10.1007/s10959-024-01344-2","DOIUrl":null,"url":null,"abstract":"<p>We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to <i>p</i>th moment and pathwise exponential stability for <span>\\(p\\ge 2\\)</span> with explicit Lyapunov exponents.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments\",\"authors\":\"Alexander Kalinin, Thilo Meyer-Brandis, Frank Proske\",\"doi\":\"10.1007/s10959-024-01344-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to <i>p</i>th moment and pathwise exponential stability for <span>\\\\(p\\\\ge 2\\\\)</span> with explicit Lyapunov exponents.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01344-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01344-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments
We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to pth moment and pathwise exponential stability for \(p\ge 2\) with explicit Lyapunov exponents.