非线性噪声驱动的无界薄域上随机反应-扩散问题的不变度量

Pub Date : 2024-09-02 DOI:10.1007/s10959-024-01367-9
Zhe Pu, Jianxiu Guo, Dingshi Li
{"title":"非线性噪声驱动的无界薄域上随机反应-扩散问题的不变度量","authors":"Zhe Pu, Jianxiu Guo, Dingshi Li","doi":"10.1007/s10959-024-01367-9","DOIUrl":null,"url":null,"abstract":"<p>This article is concerned with the limiting behavior of invariant measures for stochastic reaction–diffusion equations driven by nonlinear noise on unbounded thin domains. We first show the existence of invariant measures when the diffusion terms are globally Lipschitz continuous. The uniform estimates on the tails of solutions are employed to present the tightness of a family of probability distributions of solutions in order to overcome the non-compactness of usual Sobolev embeddings on unbounded domains. Then, we prove any limit of invariant measures of the equations defined on <span>\\((n+1)\\)</span>-dimensional unbounded thin domains must be an invariant measure of the limiting system as the thin domains collapse onto the space <span>\\(\\mathbb {R}^n\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise\",\"authors\":\"Zhe Pu, Jianxiu Guo, Dingshi Li\",\"doi\":\"10.1007/s10959-024-01367-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is concerned with the limiting behavior of invariant measures for stochastic reaction–diffusion equations driven by nonlinear noise on unbounded thin domains. We first show the existence of invariant measures when the diffusion terms are globally Lipschitz continuous. The uniform estimates on the tails of solutions are employed to present the tightness of a family of probability distributions of solutions in order to overcome the non-compactness of usual Sobolev embeddings on unbounded domains. Then, we prove any limit of invariant measures of the equations defined on <span>\\\\((n+1)\\\\)</span>-dimensional unbounded thin domains must be an invariant measure of the limiting system as the thin domains collapse onto the space <span>\\\\(\\\\mathbb {R}^n\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01367-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01367-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注无界薄域上由非线性噪声驱动的随机反应扩散方程的不变量测量的极限行为。我们首先证明了当扩散项为全局 Lipschitz 连续时不变量的存在性。利用对解的尾部的均匀估计,提出了解的概率分布族的紧密性,以克服无界域上通常的 Sobolev 嵌入的非紧密性。然后,我们证明了定义在((n+1)\)维无界薄域上的方程的不变度量的任何极限都必须是极限系统的不变度量,因为薄域塌缩到了\(\mathbb {R}^n\)空间上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise

This article is concerned with the limiting behavior of invariant measures for stochastic reaction–diffusion equations driven by nonlinear noise on unbounded thin domains. We first show the existence of invariant measures when the diffusion terms are globally Lipschitz continuous. The uniform estimates on the tails of solutions are employed to present the tightness of a family of probability distributions of solutions in order to overcome the non-compactness of usual Sobolev embeddings on unbounded domains. Then, we prove any limit of invariant measures of the equations defined on \((n+1)\)-dimensional unbounded thin domains must be an invariant measure of the limiting system as the thin domains collapse onto the space \(\mathbb {R}^n\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信