通过深度学习驱动的超分辨率增强中微子望远镜的事件处理能力

Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles
{"title":"通过深度学习驱动的超分辨率增强中微子望远镜的事件处理能力","authors":"Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles","doi":"arxiv-2408.08474","DOIUrl":null,"url":null,"abstract":"Recent discoveries by neutrino telescopes, such as the IceCube Neutrino\nObservatory, relied extensively on machine learning (ML) tools to infer\nphysical quantities from the raw photon hits detected. Neutrino telescope\nreconstruction algorithms are limited by the sparse sampling of photons by the\noptical modules due to the relatively large spacing ($10-100\\,{\\rm m})$ between\nthem. In this letter, we propose a novel technique that learns photon transport\nthrough the detector medium through the use of deep learning-driven\nsuper-resolution of data events. These ``improved'' events can then be\nreconstructed using traditional or ML techniques, resulting in improved\nresolution. Our strategy arranges additional ``virtual'' optical modules within\nan existing detector geometry and trains a convolutional neural network to\npredict the hits on these virtual optical modules. We show that this technique\nimproves the angular reconstruction of muons in a generic ice-based neutrino\ntelescope. Our results readily extend to water-based neutrino telescopes and\nother event morphologies.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution\",\"authors\":\"Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles\",\"doi\":\"arxiv-2408.08474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent discoveries by neutrino telescopes, such as the IceCube Neutrino\\nObservatory, relied extensively on machine learning (ML) tools to infer\\nphysical quantities from the raw photon hits detected. Neutrino telescope\\nreconstruction algorithms are limited by the sparse sampling of photons by the\\noptical modules due to the relatively large spacing ($10-100\\\\,{\\\\rm m})$ between\\nthem. In this letter, we propose a novel technique that learns photon transport\\nthrough the detector medium through the use of deep learning-driven\\nsuper-resolution of data events. These ``improved'' events can then be\\nreconstructed using traditional or ML techniques, resulting in improved\\nresolution. Our strategy arranges additional ``virtual'' optical modules within\\nan existing detector geometry and trains a convolutional neural network to\\npredict the hits on these virtual optical modules. We show that this technique\\nimproves the angular reconstruction of muons in a generic ice-based neutrino\\ntelescope. Our results readily extend to water-based neutrino telescopes and\\nother event morphologies.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冰立方中微子观测站(IceCube NeutrinoObservatory)等中微子望远镜最近的发现广泛依赖于机器学习(ML)工具,以便从检测到的原始光子命中推断物理量。中微子望远镜的构建算法受限于光学模块对光子的稀疏采样,因为它们之间的间距相对较大($10-100,{\rm})$。在这封信中,我们提出了一种新技术,通过使用深度学习驱动的数据事件超分辨率来学习探测器介质中的光子传输。这些 "改进的 "事件可以使用传统或 ML 技术重新构建,从而提高分辨率。我们的策略是在现有探测器的几何结构中布置额外的 "虚拟 "光学模块,并训练一个卷积神经网络来预测这些虚拟光学模块上的命中率。我们的研究表明,这种技术改进了一般冰基中子望远镜中μ介子的角度重建。我们的结果很容易扩展到水基中微子望远镜和其他事件形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution
Recent discoveries by neutrino telescopes, such as the IceCube Neutrino Observatory, relied extensively on machine learning (ML) tools to infer physical quantities from the raw photon hits detected. Neutrino telescope reconstruction algorithms are limited by the sparse sampling of photons by the optical modules due to the relatively large spacing ($10-100\,{\rm m})$ between them. In this letter, we propose a novel technique that learns photon transport through the detector medium through the use of deep learning-driven super-resolution of data events. These ``improved'' events can then be reconstructed using traditional or ML techniques, resulting in improved resolution. Our strategy arranges additional ``virtual'' optical modules within an existing detector geometry and trains a convolutional neural network to predict the hits on these virtual optical modules. We show that this technique improves the angular reconstruction of muons in a generic ice-based neutrino telescope. Our results readily extend to water-based neutrino telescopes and other event morphologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信