E. Marzec, S. Ajimura, A. Antonakis, M. Botran, M. K. Cheoun, J. H. Choi, J. W. Choi, J. Y. Choi, T. Dodo, H. Furuta, J. H. Goh, K. Haga, M. Harada, S. Hasegawa, Y. Hino, T. Hiraiwa, W. Hwang, T. Iida, E. Iwai, S. Iwata, H. I. Jang, J. S. Jang, M. C. Jang, H. K. Jeon, S. H. Jeon, K. K. Joo, D. E. Jung, S. K. Kang, Y. Kasugai, T. Kawasaki, E. J. Kim, J. Y. Kim, E. M. Kim, S. Y. Kim, W. Kim, S. B. Kim, H. Kinoshita, T. Konno, K. Kuwata, D. H. Lee, S. Lee, I. T. Lim, C. Little, T. Maruyama, S. Masuda, S. Meigo, S. Monjushiro, D. H. Moon, T. Nakano, M. Niiyama, K. Nishikawa, M. Noumachi, M. Y. Pac, B. J. Park, H. W. Park, J. B. Park, J. S. Park, J. S. Park, R. G. Park, S. J. M. Peeters, G. Roellinghoff, C. Rott, J. W. Ryu, K. Sakai, S. Sakamoto, T. Shima, C. D. Shin, J. Spitz, I. Stancu, F. Suekane, Y. Sugaya, K. Suzuya, M. Taira, Y. Takeuchi, W. Wang, J. Waterfield, W. Wei, R. White, Y. Yamaguchi, M. Yeh, I. S. Yeo, C. Yoo, I. Yu, A. Zohaib
{"title":"首次测量单能中微子带电电流相互作用中核效应导致的失踪能量","authors":"E. Marzec, S. Ajimura, A. Antonakis, M. Botran, M. K. Cheoun, J. H. Choi, J. W. Choi, J. Y. Choi, T. Dodo, H. Furuta, J. H. Goh, K. Haga, M. Harada, S. Hasegawa, Y. Hino, T. Hiraiwa, W. Hwang, T. Iida, E. Iwai, S. Iwata, H. I. Jang, J. S. Jang, M. C. Jang, H. K. Jeon, S. H. Jeon, K. K. Joo, D. E. Jung, S. K. Kang, Y. Kasugai, T. Kawasaki, E. J. Kim, J. Y. Kim, E. M. Kim, S. Y. Kim, W. Kim, S. B. Kim, H. Kinoshita, T. Konno, K. Kuwata, D. H. Lee, S. Lee, I. T. Lim, C. Little, T. Maruyama, S. Masuda, S. Meigo, S. Monjushiro, D. H. Moon, T. Nakano, M. Niiyama, K. Nishikawa, M. Noumachi, M. Y. Pac, B. J. Park, H. W. Park, J. B. Park, J. S. Park, J. S. Park, R. G. Park, S. J. M. Peeters, G. Roellinghoff, C. Rott, J. W. Ryu, K. Sakai, S. Sakamoto, T. Shima, C. D. Shin, J. Spitz, I. Stancu, F. Suekane, Y. Sugaya, K. Suzuya, M. Taira, Y. Takeuchi, W. Wang, J. Waterfield, W. Wei, R. White, Y. Yamaguchi, M. Yeh, I. S. Yeo, C. Yoo, I. Yu, A. Zohaib","doi":"arxiv-2409.01383","DOIUrl":null,"url":null,"abstract":"We present the first measurement of the missing energy due to nuclear effects\nin monoenergetic, muon neutrino charged-current interactions on carbon,\noriginating from $K^+ \\rightarrow \\mu^+ \\nu_\\mu$ decay-at-rest\n($E_{\\nu_\\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator\nbased experiment. Towards characterizing the neutrino interaction, ostensibly\n$\\nu_\\mu n \\rightarrow \\mu^- p$ or $\\nu_\\mu$$^{12}\\mathrm{C}$ $\\rightarrow\n\\mu^-$$^{12}\\mathrm{N}$, and in analogy to similar electron scattering based\nmeasurements, we define the missing energy as the energy transferred to the\nnucleus ($\\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m}\n\\equiv \\omega-\\sum T_p$, and relate this to visible energy in the detector,\n$E_{m}=E_{\\nu_\\mu}~(235.5~\\mathrm{MeV})-m_\\mu~(105.7~\\mathrm{MeV}) - E_{vis}$.\nThe missing energy, which is naively expected to be zero in the absence of\nnuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state\ninteractions), is uniquely sensitive to many aspects of the interaction, and\nhas previously been inaccessible with neutrinos. The shape-only, differential\ncross section measurement reported, based on a $(77\\pm3)$% pure\ndouble-coincidence KDAR signal (621 total events), provides an important\nbenchmark for models and event generators at 100s-of-MeV neutrino energies,\ncharacterized by the difficult-to-model transition region between\nneutrino-nucleus and neutrino-nucleon scattering, and relevant for applications\nin nuclear physics, neutrino oscillation measurements, and Type-II supernova\nstudies.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Measurement of Missing Energy Due to Nuclear Effects in Monoenergetic Neutrino Charged Current Interactions\",\"authors\":\"E. Marzec, S. Ajimura, A. Antonakis, M. Botran, M. K. Cheoun, J. H. Choi, J. W. Choi, J. Y. Choi, T. Dodo, H. Furuta, J. H. Goh, K. Haga, M. Harada, S. Hasegawa, Y. Hino, T. Hiraiwa, W. Hwang, T. Iida, E. Iwai, S. Iwata, H. I. Jang, J. S. Jang, M. C. Jang, H. K. Jeon, S. H. Jeon, K. K. Joo, D. E. Jung, S. K. Kang, Y. Kasugai, T. Kawasaki, E. J. Kim, J. Y. Kim, E. M. Kim, S. Y. Kim, W. Kim, S. B. Kim, H. Kinoshita, T. Konno, K. Kuwata, D. H. Lee, S. Lee, I. T. Lim, C. Little, T. Maruyama, S. Masuda, S. Meigo, S. Monjushiro, D. H. Moon, T. Nakano, M. Niiyama, K. Nishikawa, M. Noumachi, M. Y. Pac, B. J. Park, H. W. Park, J. B. Park, J. S. Park, J. S. Park, R. G. Park, S. J. M. Peeters, G. Roellinghoff, C. Rott, J. W. Ryu, K. Sakai, S. Sakamoto, T. Shima, C. D. Shin, J. Spitz, I. Stancu, F. Suekane, Y. Sugaya, K. Suzuya, M. Taira, Y. Takeuchi, W. Wang, J. Waterfield, W. Wei, R. White, Y. Yamaguchi, M. Yeh, I. S. Yeo, C. Yoo, I. Yu, A. Zohaib\",\"doi\":\"arxiv-2409.01383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first measurement of the missing energy due to nuclear effects\\nin monoenergetic, muon neutrino charged-current interactions on carbon,\\noriginating from $K^+ \\\\rightarrow \\\\mu^+ \\\\nu_\\\\mu$ decay-at-rest\\n($E_{\\\\nu_\\\\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator\\nbased experiment. Towards characterizing the neutrino interaction, ostensibly\\n$\\\\nu_\\\\mu n \\\\rightarrow \\\\mu^- p$ or $\\\\nu_\\\\mu$$^{12}\\\\mathrm{C}$ $\\\\rightarrow\\n\\\\mu^-$$^{12}\\\\mathrm{N}$, and in analogy to similar electron scattering based\\nmeasurements, we define the missing energy as the energy transferred to the\\nnucleus ($\\\\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m}\\n\\\\equiv \\\\omega-\\\\sum T_p$, and relate this to visible energy in the detector,\\n$E_{m}=E_{\\\\nu_\\\\mu}~(235.5~\\\\mathrm{MeV})-m_\\\\mu~(105.7~\\\\mathrm{MeV}) - E_{vis}$.\\nThe missing energy, which is naively expected to be zero in the absence of\\nnuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state\\ninteractions), is uniquely sensitive to many aspects of the interaction, and\\nhas previously been inaccessible with neutrinos. The shape-only, differential\\ncross section measurement reported, based on a $(77\\\\pm3)$% pure\\ndouble-coincidence KDAR signal (621 total events), provides an important\\nbenchmark for models and event generators at 100s-of-MeV neutrino energies,\\ncharacterized by the difficult-to-model transition region between\\nneutrino-nucleus and neutrino-nucleon scattering, and relevant for applications\\nin nuclear physics, neutrino oscillation measurements, and Type-II supernova\\nstudies.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Measurement of Missing Energy Due to Nuclear Effects in Monoenergetic Neutrino Charged Current Interactions
We present the first measurement of the missing energy due to nuclear effects
in monoenergetic, muon neutrino charged-current interactions on carbon,
originating from $K^+ \rightarrow \mu^+ \nu_\mu$ decay-at-rest
($E_{\nu_\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator
based experiment. Towards characterizing the neutrino interaction, ostensibly
$\nu_\mu n \rightarrow \mu^- p$ or $\nu_\mu$$^{12}\mathrm{C}$ $\rightarrow
\mu^-$$^{12}\mathrm{N}$, and in analogy to similar electron scattering based
measurements, we define the missing energy as the energy transferred to the
nucleus ($\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m}
\equiv \omega-\sum T_p$, and relate this to visible energy in the detector,
$E_{m}=E_{\nu_\mu}~(235.5~\mathrm{MeV})-m_\mu~(105.7~\mathrm{MeV}) - E_{vis}$.
The missing energy, which is naively expected to be zero in the absence of
nuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state
interactions), is uniquely sensitive to many aspects of the interaction, and
has previously been inaccessible with neutrinos. The shape-only, differential
cross section measurement reported, based on a $(77\pm3)$% pure
double-coincidence KDAR signal (621 total events), provides an important
benchmark for models and event generators at 100s-of-MeV neutrino energies,
characterized by the difficult-to-model transition region between
neutrino-nucleus and neutrino-nucleon scattering, and relevant for applications
in nuclear physics, neutrino oscillation measurements, and Type-II supernova
studies.