外域超临界椭圆问题的多重性和对称性突破

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris, Tobias Weth
{"title":"外域超临界椭圆问题的多重性和对称性突破","authors":"Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris, Tobias Weth","doi":"10.1088/1361-6544/ad74d0","DOIUrl":null,"url":null,"abstract":"We deal with the following semilinear equation in exterior domains <inline-formula>\n<tex-math><?CDATA $ -\\Delta u + u = a\\left(x\\right)|u|^{p-2}u,\\qquad u\\in H^1_0\\left({A_R}\\right),$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mtable columnalign=\"left\" displaystyle=\"true\"><mml:mtr><mml:mtd><mml:mo>−</mml:mo><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:msubsup><mml:mi>H</mml:mi><mml:mn>0</mml:mn><mml:mn>1</mml:mn></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad74d0ueqn1.gif\"></inline-graphic></inline-formula> where <inline-formula>\n<tex-math><?CDATA ${A_R} : = \\{x\\in\\mathbb{R}^N:\\, |x| \\gt {R}\\}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo>:=</mml:mo><mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup><mml:mo>:</mml:mo><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mi>x</mml:mi><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mo>&gt;</mml:mo><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad74d0ieqn1.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $N\\unicode{x2A7E} 3$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>N</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>3</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad74d0ieqn2.gif\"></inline-graphic></inline-formula>, <italic toggle=\"yes\">R</italic> &gt; 0. Assuming that the weight <italic toggle=\"yes\">a</italic> is positive and satisfies some symmetry and monotonicity properties, we exhibit a positive solution having the same features as <italic toggle=\"yes\">a</italic>, for values of <italic toggle=\"yes\">p</italic> &gt; 2 in a suitable range that includes exponents greater than the standard Sobolev critical one. In the special case of radial weight <italic toggle=\"yes\">a</italic>, our existence result ensures multiplicity of nonradial solutions. We also provide an existence result for supercritical <italic toggle=\"yes\">p</italic> in nonradial exterior domains.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"23 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity and symmetry breaking for supercritical elliptic problems in exterior domains\",\"authors\":\"Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris, Tobias Weth\",\"doi\":\"10.1088/1361-6544/ad74d0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with the following semilinear equation in exterior domains <inline-formula>\\n<tex-math><?CDATA $ -\\\\Delta u + u = a\\\\left(x\\\\right)|u|^{p-2}u,\\\\qquad u\\\\in H^1_0\\\\left({A_R}\\\\right),$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mtable columnalign=\\\"left\\\" displaystyle=\\\"true\\\"><mml:mtr><mml:mtd><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:msubsup><mml:mi>H</mml:mi><mml:mn>0</mml:mn><mml:mn>1</mml:mn></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad74d0ueqn1.gif\\\"></inline-graphic></inline-formula> where <inline-formula>\\n<tex-math><?CDATA ${A_R} : = \\\\{x\\\\in\\\\mathbb{R}^N:\\\\, |x| \\\\gt {R}\\\\}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo>:=</mml:mo><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup><mml:mo>:</mml:mo><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mi>x</mml:mi><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mo>&gt;</mml:mo><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad74d0ieqn1.gif\\\"></inline-graphic></inline-formula>, <inline-formula>\\n<tex-math><?CDATA $N\\\\unicode{x2A7E} 3$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>N</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>3</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad74d0ieqn2.gif\\\"></inline-graphic></inline-formula>, <italic toggle=\\\"yes\\\">R</italic> &gt; 0. Assuming that the weight <italic toggle=\\\"yes\\\">a</italic> is positive and satisfies some symmetry and monotonicity properties, we exhibit a positive solution having the same features as <italic toggle=\\\"yes\\\">a</italic>, for values of <italic toggle=\\\"yes\\\">p</italic> &gt; 2 in a suitable range that includes exponents greater than the standard Sobolev critical one. In the special case of radial weight <italic toggle=\\\"yes\\\">a</italic>, our existence result ensures multiplicity of nonradial solutions. We also provide an existence result for supercritical <italic toggle=\\\"yes\\\">p</italic> in nonradial exterior domains.\",\"PeriodicalId\":54715,\"journal\":{\"name\":\"Nonlinearity\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinearity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6544/ad74d0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad74d0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们处理的是外部域中的半线性方程 -Δu+u=a(x)|u|p-2u,u∈H01(AR),其中 AR:={x∈RN:|x|>R}, N⩾3, R > 0。假定权重 a 为正值,并满足一些对称性和单调性特性,对于 p > 2 的取值范围(包括大于标准索波列夫临界值的指数),我们展示了与 a 具有相同特征的正解。在径向权 a 的特殊情况下,我们的存在性结果确保了非径向解的多重性。我们还提供了非径向外部域中超临界 p 的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity and symmetry breaking for supercritical elliptic problems in exterior domains
We deal with the following semilinear equation in exterior domains Δu+u=a(x)|u|p2u,uH01(AR), where AR:={xRN:|x|>R}, N3, R > 0. Assuming that the weight a is positive and satisfies some symmetry and monotonicity properties, we exhibit a positive solution having the same features as a, for values of p > 2 in a suitable range that includes exponents greater than the standard Sobolev critical one. In the special case of radial weight a, our existence result ensures multiplicity of nonradial solutions. We also provide an existence result for supercritical p in nonradial exterior domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinearity
Nonlinearity 物理-物理:数学物理
CiteScore
3.00
自引率
5.90%
发文量
170
审稿时长
12 months
期刊介绍: Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest. Subject coverage: The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal. Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena. Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信