二维非线性 Neumann 问题的锐边界集中 *

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Francesca De Marchis, Habib Fourti and Isabella Ianni
{"title":"二维非线性 Neumann 问题的锐边界集中 *","authors":"Francesca De Marchis, Habib Fourti and Isabella Ianni","doi":"10.1088/1361-6544/ad7450","DOIUrl":null,"url":null,"abstract":"We consider the elliptic equation in a bounded, smooth domain subject to the nonlinear Neumann boundary condition on and study the asymptotic behaviour as the exponent of families of positive solutions up satisfying uniform energy bounds. We prove energy quantisation and characterise the boundary concentration. In particular we describe the local asymptotic profile of the solutions around each concentration point and get sharp convergence results for the -norm.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp boundary concentration for a two-dimensional nonlinear Neumann problem *\",\"authors\":\"Francesca De Marchis, Habib Fourti and Isabella Ianni\",\"doi\":\"10.1088/1361-6544/ad7450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the elliptic equation in a bounded, smooth domain subject to the nonlinear Neumann boundary condition on and study the asymptotic behaviour as the exponent of families of positive solutions up satisfying uniform energy bounds. We prove energy quantisation and characterise the boundary concentration. In particular we describe the local asymptotic profile of the solutions around each concentration point and get sharp convergence results for the -norm.\",\"PeriodicalId\":54715,\"journal\":{\"name\":\"Nonlinearity\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinearity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6544/ad7450\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad7450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了受非线性诺依曼边界条件限制的有界光滑域中的椭圆方程,并研究了满足均匀能量约束的正解群的指数渐近行为。我们证明了能量量化并描述了边界集中的特征。特别是,我们描述了每个集中点周围解的局部渐近剖面,并得到了-规范的尖锐收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp boundary concentration for a two-dimensional nonlinear Neumann problem *
We consider the elliptic equation in a bounded, smooth domain subject to the nonlinear Neumann boundary condition on and study the asymptotic behaviour as the exponent of families of positive solutions up satisfying uniform energy bounds. We prove energy quantisation and characterise the boundary concentration. In particular we describe the local asymptotic profile of the solutions around each concentration point and get sharp convergence results for the -norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinearity
Nonlinearity 物理-物理:数学物理
CiteScore
3.00
自引率
5.90%
发文量
170
审稿时长
12 months
期刊介绍: Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest. Subject coverage: The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal. Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena. Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信