人工智能促进政党内部民主

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Claudio Novelli, Giuliano Formisano, Prathm Juneja, Giulia Sandri, Luciano Floridi
{"title":"人工智能促进政党内部民主","authors":"Claudio Novelli, Giuliano Formisano, Prathm Juneja, Giulia Sandri, Luciano Floridi","doi":"10.1007/s11023-024-09693-x","DOIUrl":null,"url":null,"abstract":"<p>The article argues that AI can enhance the measurement and implementation of democratic processes within political parties, known as Intra-Party Democracy (IPD). It identifies the limitations of traditional methods for measuring IPD, which often rely on formal parameters, self-reported data, and tools like surveys. Such limitations lead to partial data collection, rare updates, and significant resource demands. To address these issues, the article suggests that specific data management and Machine Learning techniques, such as natural language processing and sentiment analysis, can improve the measurement and practice of IPD.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":"6 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence for the Internal Democracy of Political Parties\",\"authors\":\"Claudio Novelli, Giuliano Formisano, Prathm Juneja, Giulia Sandri, Luciano Floridi\",\"doi\":\"10.1007/s11023-024-09693-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article argues that AI can enhance the measurement and implementation of democratic processes within political parties, known as Intra-Party Democracy (IPD). It identifies the limitations of traditional methods for measuring IPD, which often rely on formal parameters, self-reported data, and tools like surveys. Such limitations lead to partial data collection, rare updates, and significant resource demands. To address these issues, the article suggests that specific data management and Machine Learning techniques, such as natural language processing and sentiment analysis, can improve the measurement and practice of IPD.</p>\",\"PeriodicalId\":51133,\"journal\":{\"name\":\"Minds and Machines\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minds and Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11023-024-09693-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-024-09693-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

文章认为,人工智能可以加强对政党内部民主进程(即党内民主(IPD))的测量和实施。文章指出了衡量 IPD 的传统方法的局限性,这些方法通常依赖于正式参数、自我报告数据以及调查等工具。这些局限性导致数据收集不全面、很少更新以及大量的资源需求。为解决这些问题,文章建议采用特定的数据管理和机器学习技术(如自然语言处理和情感分析)来改进 IPD 的测量和实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Intelligence for the Internal Democracy of Political Parties

Artificial Intelligence for the Internal Democracy of Political Parties

The article argues that AI can enhance the measurement and implementation of democratic processes within political parties, known as Intra-Party Democracy (IPD). It identifies the limitations of traditional methods for measuring IPD, which often rely on formal parameters, self-reported data, and tools like surveys. Such limitations lead to partial data collection, rare updates, and significant resource demands. To address these issues, the article suggests that specific data management and Machine Learning techniques, such as natural language processing and sentiment analysis, can improve the measurement and practice of IPD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minds and Machines
Minds and Machines 工程技术-计算机:人工智能
CiteScore
12.60
自引率
2.70%
发文量
30
审稿时长
>12 weeks
期刊介绍: Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science. Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios. By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信