论皮索特或萨利姆基中某些代数数贪婪展开的独立性

IF 0.5 4区 数学 Q3 MATHEMATICS
Eiji Miyanohara
{"title":"论皮索特或萨利姆基中某些代数数贪婪展开的独立性","authors":"Eiji Miyanohara","doi":"10.1007/s10986-024-09643-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>β</i> be a Pisot or Salem number with <i>β &gt;</i> 1, and let <i>α</i><sub>1</sub> and <i>α</i><sub>2</sub> be elements in <span>\\({\\mathbb{Q}}\\)</span>(<i>β</i>) ∩ [0<i>,</i> 1). In this note, we prove that <i>α</i><sub>1</sub> and <i>α</i><sub>2</sub> have either the same tail greedy expansions in a base <i>β</i> or independent random greedy expansions in a base <i>β</i>.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the independence of greedy expansions of certain algebraic numbers in a Pisot or Salem base\",\"authors\":\"Eiji Miyanohara\",\"doi\":\"10.1007/s10986-024-09643-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>β</i> be a Pisot or Salem number with <i>β &gt;</i> 1, and let <i>α</i><sub>1</sub> and <i>α</i><sub>2</sub> be elements in <span>\\\\({\\\\mathbb{Q}}\\\\)</span>(<i>β</i>) ∩ [0<i>,</i> 1). In this note, we prove that <i>α</i><sub>1</sub> and <i>α</i><sub>2</sub> have either the same tail greedy expansions in a base <i>β</i> or independent random greedy expansions in a base <i>β</i>.</p>\",\"PeriodicalId\":51108,\"journal\":{\"name\":\"Lithuanian Mathematical Journal\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09643-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09643-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 β 是 β > 1 的皮索特数或萨伦数,设 α1 和 α2 是 \({\mathbb{Q}}\)(β) ∩ [0, 1) 中的元素。在本注中,我们将证明 α1 和 α2 要么在基数 β 中具有相同的尾部贪心展开,要么在基数 β 中具有独立的随机贪心展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the independence of greedy expansions of certain algebraic numbers in a Pisot or Salem base

Let β be a Pisot or Salem number with β > 1, and let α1 and α2 be elements in \({\mathbb{Q}}\)(β) ∩ [0, 1). In this note, we prove that α1 and α2 have either the same tail greedy expansions in a base β or independent random greedy expansions in a base β.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Lithuanian Mathematical Journal publishes high-quality original papers mainly in pure mathematics. This multidisciplinary quarterly provides mathematicians and researchers in other areas of science with a peer-reviewed forum for the exchange of vital ideas in the field of mathematics. The scope of the journal includes but is not limited to: Probability theory and statistics; Differential equations (theory and numerical methods); Number theory; Financial and actuarial mathematics, econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信