{"title":"新西兰林下常绿和落叶树种的比叶面积及其个体内差异","authors":"Insu Jo, Hamish Maule, Angela J. Brandt","doi":"10.1007/s11258-024-01455-0","DOIUrl":null,"url":null,"abstract":"<p>Specific leaf area (SLA) plays a critical role in carbon assimilation and nutrient cycling. While leaf habit (deciduous vs. evergreen) has often been recognized as a reliable predictor of SLA—with deciduous species typically having higher mean SLA values due to lower concentration of structural components compared to evergreens—high variation in SLA among evergreen species suggests further investigation of variation for species with this leaf habit could improve predictions of SLA effects on community and ecosystem processes. Furthermore, the presence of leaves of different ages in evergreen plants, emerging over multiple years, could amplify the within-individual variation in SLA, which remains underexplored. Here we report variations of SLA measured from c. 2000 leaves collected from 36 individuals across 19 woody species in an understory environment in New Zealand (NZ). We found that while most deciduous species, predominantly non-native, clustered towards higher SLA values, evergreen species presented a wide SLA spectrum. Moreover, we found that while being deciduous, having a smaller leaf size, and younger leaves, collected from lateral branches, correlated with elevated SLA values, the leaf habit did not primarily drive the within-individual SLA variation. Instead, smaller leaf size emerged as a significant predictor of within-individual SLA variation. The branch-order effect on SLA underscores a methodological consideration: accurate estimation of total leaf area in evergreen trees requires representative sampling across all branch orders. Our study also highlights the need for integrating leaf traits such as leaf size and branch order into functional trait analyses. Further research is vital to understand the underlying mechanisms of these trait variations and their impacts on ecosystem functioning.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific leaf area and its within-individual variation in understory evergreen and deciduous woody species in New Zealand\",\"authors\":\"Insu Jo, Hamish Maule, Angela J. Brandt\",\"doi\":\"10.1007/s11258-024-01455-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Specific leaf area (SLA) plays a critical role in carbon assimilation and nutrient cycling. While leaf habit (deciduous vs. evergreen) has often been recognized as a reliable predictor of SLA—with deciduous species typically having higher mean SLA values due to lower concentration of structural components compared to evergreens—high variation in SLA among evergreen species suggests further investigation of variation for species with this leaf habit could improve predictions of SLA effects on community and ecosystem processes. Furthermore, the presence of leaves of different ages in evergreen plants, emerging over multiple years, could amplify the within-individual variation in SLA, which remains underexplored. Here we report variations of SLA measured from c. 2000 leaves collected from 36 individuals across 19 woody species in an understory environment in New Zealand (NZ). We found that while most deciduous species, predominantly non-native, clustered towards higher SLA values, evergreen species presented a wide SLA spectrum. Moreover, we found that while being deciduous, having a smaller leaf size, and younger leaves, collected from lateral branches, correlated with elevated SLA values, the leaf habit did not primarily drive the within-individual SLA variation. Instead, smaller leaf size emerged as a significant predictor of within-individual SLA variation. The branch-order effect on SLA underscores a methodological consideration: accurate estimation of total leaf area in evergreen trees requires representative sampling across all branch orders. Our study also highlights the need for integrating leaf traits such as leaf size and branch order into functional trait analyses. Further research is vital to understand the underlying mechanisms of these trait variations and their impacts on ecosystem functioning.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11258-024-01455-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11258-024-01455-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Specific leaf area and its within-individual variation in understory evergreen and deciduous woody species in New Zealand
Specific leaf area (SLA) plays a critical role in carbon assimilation and nutrient cycling. While leaf habit (deciduous vs. evergreen) has often been recognized as a reliable predictor of SLA—with deciduous species typically having higher mean SLA values due to lower concentration of structural components compared to evergreens—high variation in SLA among evergreen species suggests further investigation of variation for species with this leaf habit could improve predictions of SLA effects on community and ecosystem processes. Furthermore, the presence of leaves of different ages in evergreen plants, emerging over multiple years, could amplify the within-individual variation in SLA, which remains underexplored. Here we report variations of SLA measured from c. 2000 leaves collected from 36 individuals across 19 woody species in an understory environment in New Zealand (NZ). We found that while most deciduous species, predominantly non-native, clustered towards higher SLA values, evergreen species presented a wide SLA spectrum. Moreover, we found that while being deciduous, having a smaller leaf size, and younger leaves, collected from lateral branches, correlated with elevated SLA values, the leaf habit did not primarily drive the within-individual SLA variation. Instead, smaller leaf size emerged as a significant predictor of within-individual SLA variation. The branch-order effect on SLA underscores a methodological consideration: accurate estimation of total leaf area in evergreen trees requires representative sampling across all branch orders. Our study also highlights the need for integrating leaf traits such as leaf size and branch order into functional trait analyses. Further research is vital to understand the underlying mechanisms of these trait variations and their impacts on ecosystem functioning.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.