利用 NSGA-II 和 MOHH 对具有混合子系统失效依赖性的串并联系统进行多目标优化

IF 2.1 4区 工程技术
Mohamed Arezki Mellal
{"title":"利用 NSGA-II 和 MOHH 对具有混合子系统失效依赖性的串并联系统进行多目标优化","authors":"Mohamed Arezki Mellal","doi":"10.1177/16878132241273526","DOIUrl":null,"url":null,"abstract":"In complex systems, failure dependencies play a crucial role in determining their overall performance. This paper explores the multi-objective optimization of series-parallel systems with mixed failure dependencies. By optimizing system cost and availability, the study aims to identify the most efficient redundancy and repair strategies. Two optimization algorithms, the non-dominated sorting genetic algorithm II (NSGA-II) and a novel multi-objective algorithm named the multi-objective hoopoe heuristic (MOHH), are utilized alongside constraint handling techniques to produce Pareto fronts. These fronts illustrate the trade-offs between cost and availability. Additionally, a fuzzy decision method is utilized to determine the best compromise solutions from each optimization technique. Comparing the results, NSGA-II consistently outperforms MOHH in providing better compromise solutions across five independent runs. However, MOHH demonstrates a better standard deviation in its performance.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of series-parallel system with mixed subsystems failure dependencies using NSGA-II and MOHH\",\"authors\":\"Mohamed Arezki Mellal\",\"doi\":\"10.1177/16878132241273526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex systems, failure dependencies play a crucial role in determining their overall performance. This paper explores the multi-objective optimization of series-parallel systems with mixed failure dependencies. By optimizing system cost and availability, the study aims to identify the most efficient redundancy and repair strategies. Two optimization algorithms, the non-dominated sorting genetic algorithm II (NSGA-II) and a novel multi-objective algorithm named the multi-objective hoopoe heuristic (MOHH), are utilized alongside constraint handling techniques to produce Pareto fronts. These fronts illustrate the trade-offs between cost and availability. Additionally, a fuzzy decision method is utilized to determine the best compromise solutions from each optimization technique. Comparing the results, NSGA-II consistently outperforms MOHH in providing better compromise solutions across five independent runs. However, MOHH demonstrates a better standard deviation in its performance.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241273526\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241273526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂系统中,故障依赖性对其整体性能起着至关重要的作用。本文探讨了具有混合故障依赖性的串并联系统的多目标优化问题。通过优化系统成本和可用性,该研究旨在确定最有效的冗余和修复策略。本文采用了两种优化算法,即非支配排序遗传算法 II(NSGA-II)和一种名为多目标鵖启发式(MOHH)的新型多目标算法,并利用约束处理技术生成帕累托前沿。这些前沿说明了成本和可用性之间的权衡。此外,还利用模糊决策法来确定每种优化技术的最佳折衷方案。比较结果发现,在五次独立运行中,NSGA-II 在提供更好的折衷解决方案方面始终优于 MOHH。不过,MOHH 的性能标准偏差更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of series-parallel system with mixed subsystems failure dependencies using NSGA-II and MOHH
In complex systems, failure dependencies play a crucial role in determining their overall performance. This paper explores the multi-objective optimization of series-parallel systems with mixed failure dependencies. By optimizing system cost and availability, the study aims to identify the most efficient redundancy and repair strategies. Two optimization algorithms, the non-dominated sorting genetic algorithm II (NSGA-II) and a novel multi-objective algorithm named the multi-objective hoopoe heuristic (MOHH), are utilized alongside constraint handling techniques to produce Pareto fronts. These fronts illustrate the trade-offs between cost and availability. Additionally, a fuzzy decision method is utilized to determine the best compromise solutions from each optimization technique. Comparing the results, NSGA-II consistently outperforms MOHH in providing better compromise solutions across five independent runs. However, MOHH demonstrates a better standard deviation in its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信