加权多点云融合

IF 2.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Kwasi Nyarko Poku-Agyemang, Alexander Reiterer
{"title":"加权多点云融合","authors":"Kwasi Nyarko Poku-Agyemang, Alexander Reiterer","doi":"10.1007/s41064-024-00310-1","DOIUrl":null,"url":null,"abstract":"<p>Multiple viewpoint 3D reconstruction has been used in recent years to create accurate complete scenes and objects used for various applications. This is to overcome limitations of single viewpoint 3D digital imaging such as occlusion within the scene during the reconstruction process. In this paper, we propose a weighted point cloud fusion process using both local and global spatial information of the point clouds to fuse them together. The process aims to minimize duplication and remove noise while maintaining a consistent level of details using spatial information from point clouds to compute a weight to fuse them. The algorithm improves the overall accuracy of the fused point cloud while maintaining a similar degree of coverage comparable with state-of-the-art point cloud fusion algorithms.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Multiple Point Cloud Fusion\",\"authors\":\"Kwasi Nyarko Poku-Agyemang, Alexander Reiterer\",\"doi\":\"10.1007/s41064-024-00310-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple viewpoint 3D reconstruction has been used in recent years to create accurate complete scenes and objects used for various applications. This is to overcome limitations of single viewpoint 3D digital imaging such as occlusion within the scene during the reconstruction process. In this paper, we propose a weighted point cloud fusion process using both local and global spatial information of the point clouds to fuse them together. The process aims to minimize duplication and remove noise while maintaining a consistent level of details using spatial information from point clouds to compute a weight to fuse them. The algorithm improves the overall accuracy of the fused point cloud while maintaining a similar degree of coverage comparable with state-of-the-art point cloud fusion algorithms.</p>\",\"PeriodicalId\":56035,\"journal\":{\"name\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s41064-024-00310-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s41064-024-00310-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,多视点三维重建技术已被用于创建精确完整的场景和对象,并被广泛应用于各种领域。这是为了克服单视点三维数字成像的局限性,如重建过程中场景内的遮挡。在本文中,我们提出了一种加权点云融合流程,利用点云的局部和全局空间信息将它们融合在一起。该流程旨在利用点云的空间信息来计算融合点云的权重,从而最大限度地减少重复和去除噪音,同时保持细节的一致性。该算法提高了融合点云的整体精度,同时保持了与最先进的点云融合算法类似的覆盖程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weighted Multiple Point Cloud Fusion

Weighted Multiple Point Cloud Fusion

Multiple viewpoint 3D reconstruction has been used in recent years to create accurate complete scenes and objects used for various applications. This is to overcome limitations of single viewpoint 3D digital imaging such as occlusion within the scene during the reconstruction process. In this paper, we propose a weighted point cloud fusion process using both local and global spatial information of the point clouds to fuse them together. The process aims to minimize duplication and remove noise while maintaining a consistent level of details using spatial information from point clouds to compute a weight to fuse them. The algorithm improves the overall accuracy of the fused point cloud while maintaining a similar degree of coverage comparable with state-of-the-art point cloud fusion algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
2.40%
发文量
38
期刊介绍: PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration. Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信