Maurizio Di Nella, Francesco de Paulis, Carlo Olivieri, Antonio Orlandi
{"title":"去耦电容器老化和温度对输电网络长期可靠性的影响","authors":"Maurizio Di Nella, Francesco de Paulis, Carlo Olivieri, Antonio Orlandi","doi":"10.1007/s43236-024-00904-3","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, almost all electronic systems on printed circuit boards (PCB) adopt a vital element known as the power delivery network (PDN). However, the performance of the PDN is susceptible to variables such as the temperature and aging of its key constituents: the decoupling capacitors (decaps). Consequently, the long-term reliability of the PDN demands meticulous consideration to foresee how its performance can deviate from the initial design specifications. A realistic high-current server system is considered. It involves hundreds of decaps to achieve the required target impedance as optimally selected and laid out by the Power Integrity (PI) designer. The degradation of decap performance is analyzed by collecting experimental data from tens of decaps for each type used in the design while applying an accelerated aging process at different temperatures. The impact of aging in terms of the capacitance, parasitic inductance, and resistance of the decaps is considered to illustrate an innovative methodological design approach based on statistical analysis. Such a design approach can prevent the detrimental impact of a larger noise level due to the gradual performance degradation of the PDN over the intended life cycle of the system.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"161 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of decoupling capacitor aging and temperature for the long-term reliability of power delivery networks\",\"authors\":\"Maurizio Di Nella, Francesco de Paulis, Carlo Olivieri, Antonio Orlandi\",\"doi\":\"10.1007/s43236-024-00904-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, almost all electronic systems on printed circuit boards (PCB) adopt a vital element known as the power delivery network (PDN). However, the performance of the PDN is susceptible to variables such as the temperature and aging of its key constituents: the decoupling capacitors (decaps). Consequently, the long-term reliability of the PDN demands meticulous consideration to foresee how its performance can deviate from the initial design specifications. A realistic high-current server system is considered. It involves hundreds of decaps to achieve the required target impedance as optimally selected and laid out by the Power Integrity (PI) designer. The degradation of decap performance is analyzed by collecting experimental data from tens of decaps for each type used in the design while applying an accelerated aging process at different temperatures. The impact of aging in terms of the capacitance, parasitic inductance, and resistance of the decaps is considered to illustrate an innovative methodological design approach based on statistical analysis. Such a design approach can prevent the detrimental impact of a larger noise level due to the gradual performance degradation of the PDN over the intended life cycle of the system.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00904-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00904-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Impact of decoupling capacitor aging and temperature for the long-term reliability of power delivery networks
Nowadays, almost all electronic systems on printed circuit boards (PCB) adopt a vital element known as the power delivery network (PDN). However, the performance of the PDN is susceptible to variables such as the temperature and aging of its key constituents: the decoupling capacitors (decaps). Consequently, the long-term reliability of the PDN demands meticulous consideration to foresee how its performance can deviate from the initial design specifications. A realistic high-current server system is considered. It involves hundreds of decaps to achieve the required target impedance as optimally selected and laid out by the Power Integrity (PI) designer. The degradation of decap performance is analyzed by collecting experimental data from tens of decaps for each type used in the design while applying an accelerated aging process at different temperatures. The impact of aging in terms of the capacitance, parasitic inductance, and resistance of the decaps is considered to illustrate an innovative methodological design approach based on statistical analysis. Such a design approach can prevent the detrimental impact of a larger noise level due to the gradual performance degradation of the PDN over the intended life cycle of the system.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.