Mohammed Salman;Pradeep Kumar Das;Sanjay Kumar Mohanty
{"title":"利用数学建模和深度学习的传染病控制综合框架","authors":"Mohammed Salman;Pradeep Kumar Das;Sanjay Kumar Mohanty","doi":"10.1109/OJEMB.2024.3455801","DOIUrl":null,"url":null,"abstract":"Infectious diseases are a major global public health concern. Precise modeling and prediction methods are essential to develop effective strategies for disease control. However, data imbalance and the presence of noise and intensity inhomogeneity make disease detection more challenging. \n<italic>Goal:</i>\n In this article, a novel infectious disease pattern prediction system is proposed by integrating deterministic and stochastic model benefits with the benefits of the deep learning model. \n<italic>Results:</i>\n The combined benefits yield improvement in the performance of solution prediction. Moreover, the objective is also to investigate the influence of time delay on infection rates and rates associated with vaccination. \n<italic>Conclusions:</i>\n In this proposed framework, at first, the global stability at disease free equilibrium is effectively analysed using Routh-Haurwitz criteria and Lyapunov method, and the endemic equilibrium is analysed using non-linear Volterra integral equations in the infectious disease model. Unlike the existing model, emphasis is given to suggesting a model that is capable of investigating stability while considering the effect of vaccination and migration rate. Next, the influence of vaccination on the rate of infection is effectively predicted using an efficient deep learning model by employing the long-term dependencies in sequential data. Thus making the prediction more accurate.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669273","citationCount":"0","resultStr":"{\"title\":\"An Integrated Framework for Infectious Disease Control Using Mathematical Modeling and Deep Learning\",\"authors\":\"Mohammed Salman;Pradeep Kumar Das;Sanjay Kumar Mohanty\",\"doi\":\"10.1109/OJEMB.2024.3455801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infectious diseases are a major global public health concern. Precise modeling and prediction methods are essential to develop effective strategies for disease control. However, data imbalance and the presence of noise and intensity inhomogeneity make disease detection more challenging. \\n<italic>Goal:</i>\\n In this article, a novel infectious disease pattern prediction system is proposed by integrating deterministic and stochastic model benefits with the benefits of the deep learning model. \\n<italic>Results:</i>\\n The combined benefits yield improvement in the performance of solution prediction. Moreover, the objective is also to investigate the influence of time delay on infection rates and rates associated with vaccination. \\n<italic>Conclusions:</i>\\n In this proposed framework, at first, the global stability at disease free equilibrium is effectively analysed using Routh-Haurwitz criteria and Lyapunov method, and the endemic equilibrium is analysed using non-linear Volterra integral equations in the infectious disease model. Unlike the existing model, emphasis is given to suggesting a model that is capable of investigating stability while considering the effect of vaccination and migration rate. Next, the influence of vaccination on the rate of infection is effectively predicted using an efficient deep learning model by employing the long-term dependencies in sequential data. Thus making the prediction more accurate.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669273\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669273/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669273/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An Integrated Framework for Infectious Disease Control Using Mathematical Modeling and Deep Learning
Infectious diseases are a major global public health concern. Precise modeling and prediction methods are essential to develop effective strategies for disease control. However, data imbalance and the presence of noise and intensity inhomogeneity make disease detection more challenging.
Goal:
In this article, a novel infectious disease pattern prediction system is proposed by integrating deterministic and stochastic model benefits with the benefits of the deep learning model.
Results:
The combined benefits yield improvement in the performance of solution prediction. Moreover, the objective is also to investigate the influence of time delay on infection rates and rates associated with vaccination.
Conclusions:
In this proposed framework, at first, the global stability at disease free equilibrium is effectively analysed using Routh-Haurwitz criteria and Lyapunov method, and the endemic equilibrium is analysed using non-linear Volterra integral equations in the infectious disease model. Unlike the existing model, emphasis is given to suggesting a model that is capable of investigating stability while considering the effect of vaccination and migration rate. Next, the influence of vaccination on the rate of infection is effectively predicted using an efficient deep learning model by employing the long-term dependencies in sequential data. Thus making the prediction more accurate.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.