基于事件的镶嵌捆绑调整

Shuang Guo, Guillermo Gallego
{"title":"基于事件的镶嵌捆绑调整","authors":"Shuang Guo, Guillermo Gallego","doi":"arxiv-2409.07365","DOIUrl":null,"url":null,"abstract":"We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous\nrefinement of camera orientations and scene map) for a purely rotating event\ncamera. We formulate the problem as a regularized non-linear least squares\noptimization. The objective function is defined using the linearized event\ngeneration model in the camera orientations and the panoramic gradient map of\nthe scene. We show that this BA optimization has an exploitable block-diagonal\nsparsity structure, so that the problem can be solved efficiently. To the best\nof our knowledge, this is the first work to leverage such sparsity to speed up\nthe optimization in the context of event-based cameras, without the need to\nconvert events into image-like representations. We evaluate our method, called\nEMBA, on both synthetic and real-world datasets to show its effectiveness (50%\nphotometric error decrease), yielding results of unprecedented quality. In\naddition, we demonstrate EMBA using high spatial resolution event cameras,\nyielding delicate panoramas in the wild, even without an initial map. Project\npage: https://github.com/tub-rip/emba","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-based Mosaicing Bundle Adjustment\",\"authors\":\"Shuang Guo, Guillermo Gallego\",\"doi\":\"arxiv-2409.07365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous\\nrefinement of camera orientations and scene map) for a purely rotating event\\ncamera. We formulate the problem as a regularized non-linear least squares\\noptimization. The objective function is defined using the linearized event\\ngeneration model in the camera orientations and the panoramic gradient map of\\nthe scene. We show that this BA optimization has an exploitable block-diagonal\\nsparsity structure, so that the problem can be solved efficiently. To the best\\nof our knowledge, this is the first work to leverage such sparsity to speed up\\nthe optimization in the context of event-based cameras, without the need to\\nconvert events into image-like representations. We evaluate our method, called\\nEMBA, on both synthetic and real-world datasets to show its effectiveness (50%\\nphotometric error decrease), yielding results of unprecedented quality. In\\naddition, we demonstrate EMBA using high spatial resolution event cameras,\\nyielding delicate panoramas in the wild, even without an initial map. Project\\npage: https://github.com/tub-rip/emba\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了纯旋转事件摄像机的马赛克拼接束调整(即同时调整摄像机方向和场景地图)问题。我们将该问题表述为正则化非线性最小二乘优化。目标函数是利用摄像机方向的线性化事件生成模型和场景的全景梯度图来定义的。我们证明,这种 BA 优化具有可利用的块对角线稀疏结构,因此可以高效地解决问题。据我们所知,这是第一项利用这种稀疏性加速基于事件的摄像机优化的工作,而无需将事件转换为类似图像的表示。我们在合成数据集和真实数据集上评估了我们的方法(称为 EMBA),以证明其有效性(光度误差减少 50%),并获得了前所未有的高质量结果。此外,我们还利用高空间分辨率事件相机演示了 EMBA,即使没有初始地图,也能在野外生成精致的全景图。项目网页: https://github.com/tub-rip/emba
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-based Mosaicing Bundle Adjustment
We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous refinement of camera orientations and scene map) for a purely rotating event camera. We formulate the problem as a regularized non-linear least squares optimization. The objective function is defined using the linearized event generation model in the camera orientations and the panoramic gradient map of the scene. We show that this BA optimization has an exploitable block-diagonal sparsity structure, so that the problem can be solved efficiently. To the best of our knowledge, this is the first work to leverage such sparsity to speed up the optimization in the context of event-based cameras, without the need to convert events into image-like representations. We evaluate our method, called EMBA, on both synthetic and real-world datasets to show its effectiveness (50% photometric error decrease), yielding results of unprecedented quality. In addition, we demonstrate EMBA using high spatial resolution event cameras, yielding delicate panoramas in the wild, even without an initial map. Project page: https://github.com/tub-rip/emba
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信