通过元学习隐含神经表征实现快速医学形状重构

Gaia Romana De Paolis, Dimitrios Lenis, Johannes Novotny, Maria Wimmer, Astrid Berg, Theresa Neubauer, Philip Matthias Winter, David Major, Ariharasudhan Muthusami, Gerald Schröcker, Martin Mienkina, Katja Bühler
{"title":"通过元学习隐含神经表征实现快速医学形状重构","authors":"Gaia Romana De Paolis, Dimitrios Lenis, Johannes Novotny, Maria Wimmer, Astrid Berg, Theresa Neubauer, Philip Matthias Winter, David Major, Ariharasudhan Muthusami, Gerald Schröcker, Martin Mienkina, Katja Bühler","doi":"arxiv-2409.07100","DOIUrl":null,"url":null,"abstract":"Efficient and fast reconstruction of anatomical structures plays a crucial\nrole in clinical practice. Minimizing retrieval and processing times not only\npotentially enhances swift response and decision-making in critical scenarios\nbut also supports interactive surgical planning and navigation. Recent methods\nattempt to solve the medical shape reconstruction problem by utilizing implicit\nneural functions. However, their performance suffers in terms of generalization\nand computation time, a critical metric for real-time applications. To address\nthese challenges, we propose to leverage meta-learning to improve the network\nparameters initialization, reducing inference time by an order of magnitude\nwhile maintaining high accuracy. We evaluate our approach on three public\ndatasets covering different anatomical shapes and modalities, namely CT and\nMRI. Our experimental results show that our model can handle various input\nconfigurations, such as sparse slices with different orientations and spacings.\nAdditionally, we demonstrate that our method exhibits strong transferable\ncapabilities in generalizing to shape domains unobserved at training time.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations\",\"authors\":\"Gaia Romana De Paolis, Dimitrios Lenis, Johannes Novotny, Maria Wimmer, Astrid Berg, Theresa Neubauer, Philip Matthias Winter, David Major, Ariharasudhan Muthusami, Gerald Schröcker, Martin Mienkina, Katja Bühler\",\"doi\":\"arxiv-2409.07100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and fast reconstruction of anatomical structures plays a crucial\\nrole in clinical practice. Minimizing retrieval and processing times not only\\npotentially enhances swift response and decision-making in critical scenarios\\nbut also supports interactive surgical planning and navigation. Recent methods\\nattempt to solve the medical shape reconstruction problem by utilizing implicit\\nneural functions. However, their performance suffers in terms of generalization\\nand computation time, a critical metric for real-time applications. To address\\nthese challenges, we propose to leverage meta-learning to improve the network\\nparameters initialization, reducing inference time by an order of magnitude\\nwhile maintaining high accuracy. We evaluate our approach on three public\\ndatasets covering different anatomical shapes and modalities, namely CT and\\nMRI. Our experimental results show that our model can handle various input\\nconfigurations, such as sparse slices with different orientations and spacings.\\nAdditionally, we demonstrate that our method exhibits strong transferable\\ncapabilities in generalizing to shape domains unobserved at training time.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效、快速地重建解剖结构在临床实践中起着至关重要的作用。尽量缩短检索和处理时间不仅能在关键场景中提高快速反应和决策能力,还能支持交互式手术规划和导航。最近的方法试图利用隐式神经函数来解决医学形状重建问题。然而,这些方法在泛化和计算时间(实时应用的关键指标)方面表现不佳。为了应对这些挑战,我们建议利用元学习来改进网络参数初始化,从而将推理时间减少一个数量级,同时保持高精度。我们在三个公共数据集(涵盖不同的解剖形状和模式,即 CT 和 MRI)上评估了我们的方法。实验结果表明,我们的模型可以处理各种输入配置,例如具有不同方向和间距的稀疏切片。此外,我们还证明了我们的方法在泛化到训练时未观察到的形状域方面具有很强的可迁移能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations
Efficient and fast reconstruction of anatomical structures plays a crucial role in clinical practice. Minimizing retrieval and processing times not only potentially enhances swift response and decision-making in critical scenarios but also supports interactive surgical planning and navigation. Recent methods attempt to solve the medical shape reconstruction problem by utilizing implicit neural functions. However, their performance suffers in terms of generalization and computation time, a critical metric for real-time applications. To address these challenges, we propose to leverage meta-learning to improve the network parameters initialization, reducing inference time by an order of magnitude while maintaining high accuracy. We evaluate our approach on three public datasets covering different anatomical shapes and modalities, namely CT and MRI. Our experimental results show that our model can handle various input configurations, such as sparse slices with different orientations and spacings. Additionally, we demonstrate that our method exhibits strong transferable capabilities in generalizing to shape domains unobserved at training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信