量化膝关节软骨形状和病变:从图像到指标

Yongcheng Yao, Weitian Chen
{"title":"量化膝关节软骨形状和病变:从图像到指标","authors":"Yongcheng Yao, Weitian Chen","doi":"arxiv-2409.07361","DOIUrl":null,"url":null,"abstract":"Imaging features of knee articular cartilage have been shown to be potential\nimaging biomarkers for knee osteoarthritis. Despite recent methodological\nadvancements in image analysis techniques like image segmentation,\nregistration, and domain-specific image computing algorithms, only a few works\nfocus on building fully automated pipelines for imaging feature extraction. In\nthis study, we developed a deep-learning-based medical image analysis\napplication for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We\nproposed a 2-stage joint template learning and registration network, CMT-reg.\nWe trained the model using the OAI-ZIB dataset and assessed its performance in\ntemplate-to-image registration. The CMT-reg demonstrated competitive results\ncompared to other state-of-the-art models. We integrated the proposed model\ninto an automated pipeline for the quantification of cartilage shape and lesion\n(full-thickness cartilage loss, specifically). The toolbox provides a\ncomprehensive, user-friendly solution for medical image analysis and data\nvisualization. The software and models are available at\nhttps://github.com/YongchengYAO/CMT-AMAI24paper .","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics\",\"authors\":\"Yongcheng Yao, Weitian Chen\",\"doi\":\"arxiv-2409.07361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging features of knee articular cartilage have been shown to be potential\\nimaging biomarkers for knee osteoarthritis. Despite recent methodological\\nadvancements in image analysis techniques like image segmentation,\\nregistration, and domain-specific image computing algorithms, only a few works\\nfocus on building fully automated pipelines for imaging feature extraction. In\\nthis study, we developed a deep-learning-based medical image analysis\\napplication for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We\\nproposed a 2-stage joint template learning and registration network, CMT-reg.\\nWe trained the model using the OAI-ZIB dataset and assessed its performance in\\ntemplate-to-image registration. The CMT-reg demonstrated competitive results\\ncompared to other state-of-the-art models. We integrated the proposed model\\ninto an automated pipeline for the quantification of cartilage shape and lesion\\n(full-thickness cartilage loss, specifically). The toolbox provides a\\ncomprehensive, user-friendly solution for medical image analysis and data\\nvisualization. The software and models are available at\\nhttps://github.com/YongchengYAO/CMT-AMAI24paper .\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膝关节软骨的成像特征已被证明是膝关节骨关节炎的潜在成像生物标志物。尽管最近在图像分割、配准和特定领域图像计算算法等图像分析技术方面取得了方法学上的进步,但只有少数作品专注于构建全自动的图像特征提取管道。在这项研究中,我们开发了基于深度学习的膝关节软骨形态计量医学图像分析应用程序 CartiMorph Toolbox(CMT)。我们使用 OAI-ZIB 数据集训练了该模型,并评估了其模板到图像的配准性能。与其他最先进的模型相比,CMT-reg 的结果极具竞争力。我们将所提出的模型集成到一个自动化流水线中,用于量化软骨形状和病变(特别是全厚软骨损失)。该工具箱为医学图像分析和数据可视化提供了一个全面、用户友好的解决方案。软件和模型可从以下网址获取:https://github.com/YongchengYAO/CMT-AMAI24paper 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics
Imaging features of knee articular cartilage have been shown to be potential imaging biomarkers for knee osteoarthritis. Despite recent methodological advancements in image analysis techniques like image segmentation, registration, and domain-specific image computing algorithms, only a few works focus on building fully automated pipelines for imaging feature extraction. In this study, we developed a deep-learning-based medical image analysis application for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We proposed a 2-stage joint template learning and registration network, CMT-reg. We trained the model using the OAI-ZIB dataset and assessed its performance in template-to-image registration. The CMT-reg demonstrated competitive results compared to other state-of-the-art models. We integrated the proposed model into an automated pipeline for the quantification of cartilage shape and lesion (full-thickness cartilage loss, specifically). The toolbox provides a comprehensive, user-friendly solution for medical image analysis and data visualization. The software and models are available at https://github.com/YongchengYAO/CMT-AMAI24paper .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信