梦幻野兽利用部分感知知识转移提炼 3D 梦幻动物

Runjia Li, Junlin Han, Luke Melas-Kyriazi, Chunyi Sun, Zhaochong An, Zhongrui Gui, Shuyang Sun, Philip Torr, Tomas Jakab
{"title":"梦幻野兽利用部分感知知识转移提炼 3D 梦幻动物","authors":"Runjia Li, Junlin Han, Luke Melas-Kyriazi, Chunyi Sun, Zhaochong An, Zhongrui Gui, Shuyang Sun, Philip Torr, Tomas Jakab","doi":"arxiv-2409.08271","DOIUrl":null,"url":null,"abstract":"We present DreamBeast, a novel method based on score distillation sampling\n(SDS) for generating fantastical 3D animal assets composed of distinct parts.\nExisting SDS methods often struggle with this generation task due to a limited\nunderstanding of part-level semantics in text-to-image diffusion models. While\nrecent diffusion models, such as Stable Diffusion 3, demonstrate a better\npart-level understanding, they are prohibitively slow and exhibit other common\nproblems associated with single-view diffusion models. DreamBeast overcomes\nthis limitation through a novel part-aware knowledge transfer mechanism. For\neach generated asset, we efficiently extract part-level knowledge from the\nStable Diffusion 3 model into a 3D Part-Affinity implicit representation. This\nenables us to instantly generate Part-Affinity maps from arbitrary camera\nviews, which we then use to modulate the guidance of a multi-view diffusion\nmodel during SDS to create 3D assets of fantastical animals. DreamBeast\nsignificantly enhances the quality of generated 3D creatures with\nuser-specified part compositions while reducing computational overhead, as\ndemonstrated by extensive quantitative and qualitative evaluations.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DreamBeast: Distilling 3D Fantastical Animals with Part-Aware Knowledge Transfer\",\"authors\":\"Runjia Li, Junlin Han, Luke Melas-Kyriazi, Chunyi Sun, Zhaochong An, Zhongrui Gui, Shuyang Sun, Philip Torr, Tomas Jakab\",\"doi\":\"arxiv-2409.08271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present DreamBeast, a novel method based on score distillation sampling\\n(SDS) for generating fantastical 3D animal assets composed of distinct parts.\\nExisting SDS methods often struggle with this generation task due to a limited\\nunderstanding of part-level semantics in text-to-image diffusion models. While\\nrecent diffusion models, such as Stable Diffusion 3, demonstrate a better\\npart-level understanding, they are prohibitively slow and exhibit other common\\nproblems associated with single-view diffusion models. DreamBeast overcomes\\nthis limitation through a novel part-aware knowledge transfer mechanism. For\\neach generated asset, we efficiently extract part-level knowledge from the\\nStable Diffusion 3 model into a 3D Part-Affinity implicit representation. This\\nenables us to instantly generate Part-Affinity maps from arbitrary camera\\nviews, which we then use to modulate the guidance of a multi-view diffusion\\nmodel during SDS to create 3D assets of fantastical animals. DreamBeast\\nsignificantly enhances the quality of generated 3D creatures with\\nuser-specified part compositions while reducing computational overhead, as\\ndemonstrated by extensive quantitative and qualitative evaluations.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于对文本到图像扩散模型中部件级语义的理解有限,现有的 SDS 方法往往难以完成这一生成任务。虽然新近的扩散模型(如稳定扩散 3)展示了较好的部件级理解,但它们的速度太慢,并表现出与单视角扩散模型相关的其他常见问题。DreamBeast 通过一种新颖的部分感知知识转移机制克服了这一局限。对于每个生成的资产,我们都能高效地从稳定扩散 3 模型中提取部件级知识,并将其转化为三维部件-亲和性隐式表示。这样,我们就能从任意的摄像机视图中即时生成 "部分-亲和性 "图,然后在 SDS 过程中用它来调节多视图扩散模型的引导,从而创建出奇幻动物的三维资产。正如大量定量和定性评估所证明的那样,DreamBeasts 显著提高了根据用户指定的部件组成生成的三维动物的质量,同时降低了计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DreamBeast: Distilling 3D Fantastical Animals with Part-Aware Knowledge Transfer
We present DreamBeast, a novel method based on score distillation sampling (SDS) for generating fantastical 3D animal assets composed of distinct parts. Existing SDS methods often struggle with this generation task due to a limited understanding of part-level semantics in text-to-image diffusion models. While recent diffusion models, such as Stable Diffusion 3, demonstrate a better part-level understanding, they are prohibitively slow and exhibit other common problems associated with single-view diffusion models. DreamBeast overcomes this limitation through a novel part-aware knowledge transfer mechanism. For each generated asset, we efficiently extract part-level knowledge from the Stable Diffusion 3 model into a 3D Part-Affinity implicit representation. This enables us to instantly generate Part-Affinity maps from arbitrary camera views, which we then use to modulate the guidance of a multi-view diffusion model during SDS to create 3D assets of fantastical animals. DreamBeast significantly enhances the quality of generated 3D creatures with user-specified part compositions while reducing computational overhead, as demonstrated by extensive quantitative and qualitative evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信