使用简单方法有效分割治疗后胶质瘤:人工序列生成和集合模型

Heejong Kim, Leo Milecki, Mina C Moghadam, Fengbei Liu, Minh Nguyen, Eric Qiu, Abhishek Thanki, Mert R Sabuncu
{"title":"使用简单方法有效分割治疗后胶质瘤:人工序列生成和集合模型","authors":"Heejong Kim, Leo Milecki, Mina C Moghadam, Fengbei Liu, Minh Nguyen, Eric Qiu, Abhishek Thanki, Mert R Sabuncu","doi":"arxiv-2409.08143","DOIUrl":null,"url":null,"abstract":"Segmentation is a crucial task in the medical imaging field and is often an\nimportant primary step or even a prerequisite to the analysis of medical\nvolumes. Yet treatments such as surgery complicate the accurate delineation of\nregions of interest. The BraTS Post-Treatment 2024 Challenge published the\nfirst public dataset for post-surgery glioma segmentation and addresses the\naforementioned issue by fostering the development of automated segmentation\ntools for glioma in MRI data. In this effort, we propose two straightforward\napproaches to enhance the segmentation performances of deep learning-based\nmethodologies. First, we incorporate an additional input based on a simple\nlinear combination of the available MRI sequences input, which highlights\nenhancing tumors. Second, we employ various ensembling methods to weigh the\ncontribution of a battery of models. Our results demonstrate that these\napproaches significantly improve segmentation performance compared to baseline\nmodels, underscoring the effectiveness of these simple approaches in improving\nmedical image segmentation tasks.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models\",\"authors\":\"Heejong Kim, Leo Milecki, Mina C Moghadam, Fengbei Liu, Minh Nguyen, Eric Qiu, Abhishek Thanki, Mert R Sabuncu\",\"doi\":\"arxiv-2409.08143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation is a crucial task in the medical imaging field and is often an\\nimportant primary step or even a prerequisite to the analysis of medical\\nvolumes. Yet treatments such as surgery complicate the accurate delineation of\\nregions of interest. The BraTS Post-Treatment 2024 Challenge published the\\nfirst public dataset for post-surgery glioma segmentation and addresses the\\naforementioned issue by fostering the development of automated segmentation\\ntools for glioma in MRI data. In this effort, we propose two straightforward\\napproaches to enhance the segmentation performances of deep learning-based\\nmethodologies. First, we incorporate an additional input based on a simple\\nlinear combination of the available MRI sequences input, which highlights\\nenhancing tumors. Second, we employ various ensembling methods to weigh the\\ncontribution of a battery of models. Our results demonstrate that these\\napproaches significantly improve segmentation performance compared to baseline\\nmodels, underscoring the effectiveness of these simple approaches in improving\\nmedical image segmentation tasks.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分割是医学影像领域的一项关键任务,通常是重要的第一步,甚至是分析医学图像的先决条件。然而,手术等治疗方法使得准确划分相关区域变得更加复杂。BraTS 治疗后 2024 挑战赛发布了首个用于手术后胶质瘤分割的公开数据集,并通过促进磁共振成像数据中胶质瘤自动分割工具的开发来解决上述问题。在这项工作中,我们提出了两种直接的方法来提高基于深度学习的方法的分割性能。首先,我们在现有核磁共振成像序列输入的简单线性组合基础上加入了额外的输入,从而突出了增大的肿瘤。其次,我们采用各种集合方法来权衡一系列模型的贡献。我们的结果表明,与基线模型相比,这些方法显著提高了分割性能,凸显了这些简单方法在改进医学图像分割任务方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models
Segmentation is a crucial task in the medical imaging field and is often an important primary step or even a prerequisite to the analysis of medical volumes. Yet treatments such as surgery complicate the accurate delineation of regions of interest. The BraTS Post-Treatment 2024 Challenge published the first public dataset for post-surgery glioma segmentation and addresses the aforementioned issue by fostering the development of automated segmentation tools for glioma in MRI data. In this effort, we propose two straightforward approaches to enhance the segmentation performances of deep learning-based methodologies. First, we incorporate an additional input based on a simple linear combination of the available MRI sequences input, which highlights enhancing tumors. Second, we employ various ensembling methods to weigh the contribution of a battery of models. Our results demonstrate that these approaches significantly improve segmentation performance compared to baseline models, underscoring the effectiveness of these simple approaches in improving medical image segmentation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信