磁共振成像中的脑肿瘤分割模型组合

Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru
{"title":"磁共振成像中的脑肿瘤分割模型组合","authors":"Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru","doi":"arxiv-2409.08232","DOIUrl":null,"url":null,"abstract":"Segmenting brain tumors in multi-parametric magnetic resonance imaging\nenables performing quantitative analysis in support of clinical trials and\npersonalized patient care. This analysis provides the potential to impact\nclinical decision-making processes, including diagnosis and prognosis. In 2023,\nthe well-established Brain Tumor Segmentation (BraTS) challenge presented a\nsubstantial expansion with eight tasks and 4,500 brain tumor cases. In this\npaper, we present a deep learning-based ensemble strategy that is evaluated for\nnewly included tumor cases in three tasks: pediatric brain tumors (PED),\nintracranial meningioma (MEN), and brain metastases (MET). In particular, we\nensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a\nregion-wise basis. Furthermore, we implemented a targeted post-processing\nstrategy based on a cross-validated threshold search to improve the\nsegmentation results for tumor sub-regions. The evaluation of our proposed\nmethod on unseen test cases for the three tasks resulted in lesion-wise Dice\nscores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555,\n0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively.\nOur method was ranked first for PED, third for MEN, and fourth for MET,\nrespectively.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging\",\"authors\":\"Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru\",\"doi\":\"arxiv-2409.08232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmenting brain tumors in multi-parametric magnetic resonance imaging\\nenables performing quantitative analysis in support of clinical trials and\\npersonalized patient care. This analysis provides the potential to impact\\nclinical decision-making processes, including diagnosis and prognosis. In 2023,\\nthe well-established Brain Tumor Segmentation (BraTS) challenge presented a\\nsubstantial expansion with eight tasks and 4,500 brain tumor cases. In this\\npaper, we present a deep learning-based ensemble strategy that is evaluated for\\nnewly included tumor cases in three tasks: pediatric brain tumors (PED),\\nintracranial meningioma (MEN), and brain metastases (MET). In particular, we\\nensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a\\nregion-wise basis. Furthermore, we implemented a targeted post-processing\\nstrategy based on a cross-validated threshold search to improve the\\nsegmentation results for tumor sub-regions. The evaluation of our proposed\\nmethod on unseen test cases for the three tasks resulted in lesion-wise Dice\\nscores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555,\\n0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively.\\nOur method was ranked first for PED, third for MEN, and fourth for MET,\\nrespectively.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对多参数磁共振成像中的脑肿瘤进行分段,可以进行定量分析,为临床试验和个性化病人护理提供支持。这种分析有可能影响临床决策过程,包括诊断和预后。2023 年,成熟的脑肿瘤分割(BraTS)挑战赛有了实质性的扩展,共有八项任务和 4500 个脑肿瘤病例。在本文中,我们提出了一种基于深度学习的集合策略,并针对新纳入的三个任务中的肿瘤病例进行了评估:小儿脑肿瘤(PED)、颅内脑膜瘤(MEN)和脑转移瘤(MET)。特别是,我们将最先进的 nnU-Net 和 Swin UNETR 模型的输出按区域进行了组合。此外,我们还在交叉验证阈值搜索的基础上实施了有针对性的后处理策略,以改进这些肿瘤子区域的分割结果。在对三个任务的未见测试案例进行评估后,我们提出的方法在增强肿瘤、肿瘤核心和整个肿瘤方面的病灶 Dicescores 分别为:PED:0.653、0.809、0.826;MEN:0.876、0.867、0.849;MET:0.555、0.6、0.58。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging
Segmenting brain tumors in multi-parametric magnetic resonance imaging enables performing quantitative analysis in support of clinical trials and personalized patient care. This analysis provides the potential to impact clinical decision-making processes, including diagnosis and prognosis. In 2023, the well-established Brain Tumor Segmentation (BraTS) challenge presented a substantial expansion with eight tasks and 4,500 brain tumor cases. In this paper, we present a deep learning-based ensemble strategy that is evaluated for newly included tumor cases in three tasks: pediatric brain tumors (PED), intracranial meningioma (MEN), and brain metastases (MET). In particular, we ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a region-wise basis. Furthermore, we implemented a targeted post-processing strategy based on a cross-validated threshold search to improve the segmentation results for tumor sub-regions. The evaluation of our proposed method on unseen test cases for the three tasks resulted in lesion-wise Dice scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555, 0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively. Our method was ranked first for PED, third for MEN, and fourth for MET, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信