Seyed M. H. S. Rezvani, Maria João Falcão Silva, Nuno Marques de Almeida
{"title":"绘制国家公路网的地理空间人工智能洪水风险图","authors":"Seyed M. H. S. Rezvani, Maria João Falcão Silva, Nuno Marques de Almeida","doi":"10.3390/ijgi13090323","DOIUrl":null,"url":null,"abstract":"Previous studies have utilized machine learning algorithms that incorporate topographic and geological characteristics to model flood susceptibility, resulting in comprehensive flood maps. This study introduces an innovative integration of geospatial artificial intelligence for hazard mapping to assess flood risks on road networks within Portuguese municipalities. Additionally, it incorporates OpenStreetMap’s road network data to study vulnerability, offering a descriptive statistical interpretation. Through spatial overlay techniques, road segments are evaluated for flood risk based on their proximity to identified hazard zones. This method facilitates the detailed mapping of flood-impacted road networks, providing essential insights for infrastructure planning, emergency preparedness, and mitigation strategies. The study emphasizes the importance of integrating geospatial analysis tools with open data to enhance the resilience of critical infrastructure against natural hazards. The resulting maps are instrumental for understanding the impact of floods on transportation infrastructures and aiding informed decision-making for policymakers, the insurance industry, and road infrastructure asset managers.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping Geospatial AI Flood Risk in National Road Networks\",\"authors\":\"Seyed M. H. S. Rezvani, Maria João Falcão Silva, Nuno Marques de Almeida\",\"doi\":\"10.3390/ijgi13090323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have utilized machine learning algorithms that incorporate topographic and geological characteristics to model flood susceptibility, resulting in comprehensive flood maps. This study introduces an innovative integration of geospatial artificial intelligence for hazard mapping to assess flood risks on road networks within Portuguese municipalities. Additionally, it incorporates OpenStreetMap’s road network data to study vulnerability, offering a descriptive statistical interpretation. Through spatial overlay techniques, road segments are evaluated for flood risk based on their proximity to identified hazard zones. This method facilitates the detailed mapping of flood-impacted road networks, providing essential insights for infrastructure planning, emergency preparedness, and mitigation strategies. The study emphasizes the importance of integrating geospatial analysis tools with open data to enhance the resilience of critical infrastructure against natural hazards. The resulting maps are instrumental for understanding the impact of floods on transportation infrastructures and aiding informed decision-making for policymakers, the insurance industry, and road infrastructure asset managers.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mapping Geospatial AI Flood Risk in National Road Networks
Previous studies have utilized machine learning algorithms that incorporate topographic and geological characteristics to model flood susceptibility, resulting in comprehensive flood maps. This study introduces an innovative integration of geospatial artificial intelligence for hazard mapping to assess flood risks on road networks within Portuguese municipalities. Additionally, it incorporates OpenStreetMap’s road network data to study vulnerability, offering a descriptive statistical interpretation. Through spatial overlay techniques, road segments are evaluated for flood risk based on their proximity to identified hazard zones. This method facilitates the detailed mapping of flood-impacted road networks, providing essential insights for infrastructure planning, emergency preparedness, and mitigation strategies. The study emphasizes the importance of integrating geospatial analysis tools with open data to enhance the resilience of critical infrastructure against natural hazards. The resulting maps are instrumental for understanding the impact of floods on transportation infrastructures and aiding informed decision-making for policymakers, the insurance industry, and road infrastructure asset managers.