{"title":"评估遥感卫星对海上移动目标的监测能力","authors":"Weiming Li, Zhiqiang Du, Li Wang, Tiancheng Zhou","doi":"10.3390/ijgi13090325","DOIUrl":null,"url":null,"abstract":"Although an Automatic Identification System (AIS) can be used to monitor trajectories, it has become a reality for remote sensing satellite clusters to monitor maritime moving targets. The increasing demand for monitoring poses challenges for the construction of satellites, the monitoring capabilities of which urgently need to be evaluated. Conventional evaluation methods focus on the spatial characteristics of monitoring; however, the temporal characteristics and the target’s kinematic characteristics are neglected. In this study, an evaluation method that integrates the spatial and temporal characteristics of monitoring along with the target’s kinematic characteristics is proposed. Firstly, a target motion prediction model for calculating the transfer probability and a satellite observation information calculation model for obtaining observation strips and time windows are established. Secondly, an index system is established, including the target detection capability, observation coverage capability, proportion of empty window, dispersion of observation window, and deviation of observation window. Thirdly, a comprehensive evaluation is completed through combining the analytic hierarchy process and entropy weight method to obtain the monitoring capability score. Finally, simulation experiments are conducted to evaluate the monitoring capabilities of satellites for ship trajectories. The results show that the method is effective when the grid size is between 1.6 and 1.8 times the target size and the task duration is approximately twice the time interval between trajectory points. Furthermore, the method is proven to be usable in various environments.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Monitoring Capabilities of Remote Sensing Satellites for Maritime Moving Targets\",\"authors\":\"Weiming Li, Zhiqiang Du, Li Wang, Tiancheng Zhou\",\"doi\":\"10.3390/ijgi13090325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although an Automatic Identification System (AIS) can be used to monitor trajectories, it has become a reality for remote sensing satellite clusters to monitor maritime moving targets. The increasing demand for monitoring poses challenges for the construction of satellites, the monitoring capabilities of which urgently need to be evaluated. Conventional evaluation methods focus on the spatial characteristics of monitoring; however, the temporal characteristics and the target’s kinematic characteristics are neglected. In this study, an evaluation method that integrates the spatial and temporal characteristics of monitoring along with the target’s kinematic characteristics is proposed. Firstly, a target motion prediction model for calculating the transfer probability and a satellite observation information calculation model for obtaining observation strips and time windows are established. Secondly, an index system is established, including the target detection capability, observation coverage capability, proportion of empty window, dispersion of observation window, and deviation of observation window. Thirdly, a comprehensive evaluation is completed through combining the analytic hierarchy process and entropy weight method to obtain the monitoring capability score. Finally, simulation experiments are conducted to evaluate the monitoring capabilities of satellites for ship trajectories. The results show that the method is effective when the grid size is between 1.6 and 1.8 times the target size and the task duration is approximately twice the time interval between trajectory points. Furthermore, the method is proven to be usable in various environments.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090325\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090325","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Evaluation of the Monitoring Capabilities of Remote Sensing Satellites for Maritime Moving Targets
Although an Automatic Identification System (AIS) can be used to monitor trajectories, it has become a reality for remote sensing satellite clusters to monitor maritime moving targets. The increasing demand for monitoring poses challenges for the construction of satellites, the monitoring capabilities of which urgently need to be evaluated. Conventional evaluation methods focus on the spatial characteristics of monitoring; however, the temporal characteristics and the target’s kinematic characteristics are neglected. In this study, an evaluation method that integrates the spatial and temporal characteristics of monitoring along with the target’s kinematic characteristics is proposed. Firstly, a target motion prediction model for calculating the transfer probability and a satellite observation information calculation model for obtaining observation strips and time windows are established. Secondly, an index system is established, including the target detection capability, observation coverage capability, proportion of empty window, dispersion of observation window, and deviation of observation window. Thirdly, a comprehensive evaluation is completed through combining the analytic hierarchy process and entropy weight method to obtain the monitoring capability score. Finally, simulation experiments are conducted to evaluate the monitoring capabilities of satellites for ship trajectories. The results show that the method is effective when the grid size is between 1.6 and 1.8 times the target size and the task duration is approximately twice the time interval between trajectory points. Furthermore, the method is proven to be usable in various environments.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.