Minwen Tang, Wujiao Dai, Changlin Yin, Bing Hu, Jun Chen, Haoming Liu
{"title":"基于区块链技术的空间规划数据结构","authors":"Minwen Tang, Wujiao Dai, Changlin Yin, Bing Hu, Jun Chen, Haoming Liu","doi":"10.3390/ijgi13080290","DOIUrl":null,"url":null,"abstract":"Spatial planning requires ensuring the legality, uniformity, authority, and relevance of data. Blockchain technology, characterized by tamper-proofing, complete record-keeping, and process traceability, may effectively organize and manage spatial planning data. This study introduces blockchain technology to address common spatial planning problems, such as planning overlaps and conflicts. We developed a block structure, chain structure, and consensus algorithms tailored for spatial planning. To meet the data management requirements of these structures, we devised a primary unit division method based on the space and population standards of the 15 min life circle, using the Point Cloud Density Tiler. The validation experiments were conducted using the Hyperledger Fabric 2.0 technology framework in Changsha City, Hunan Province, China, with the division method validated against the number and distribution of public service facilities. The validation results show that during the data storage process, the block size remains below 1.00 MB, the data redundancy is up to 21.30%, the consensus verification rate is 150.33 times per second, the block generation rate is 20.83 blocks per minute, and the equivalent data throughput is 12.21 transactions per second. This demonstrates that the proposed method effectively addresses the challenges of block size, data redundancy, consensus algorithm efficiency, and data throughput in blockchain technology. The findings demonstrate that the structures ensure legal, uniform, and authoritative spatial planning, and advance the application of blockchain technology in relevant fields. Additionally, we explored the application of a blockchain data structure in spatial planning monitoring and early warning. This technology can be further studied and applied in related fields.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Planning Data Structure Based on Blockchain Technology\",\"authors\":\"Minwen Tang, Wujiao Dai, Changlin Yin, Bing Hu, Jun Chen, Haoming Liu\",\"doi\":\"10.3390/ijgi13080290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial planning requires ensuring the legality, uniformity, authority, and relevance of data. Blockchain technology, characterized by tamper-proofing, complete record-keeping, and process traceability, may effectively organize and manage spatial planning data. This study introduces blockchain technology to address common spatial planning problems, such as planning overlaps and conflicts. We developed a block structure, chain structure, and consensus algorithms tailored for spatial planning. To meet the data management requirements of these structures, we devised a primary unit division method based on the space and population standards of the 15 min life circle, using the Point Cloud Density Tiler. The validation experiments were conducted using the Hyperledger Fabric 2.0 technology framework in Changsha City, Hunan Province, China, with the division method validated against the number and distribution of public service facilities. The validation results show that during the data storage process, the block size remains below 1.00 MB, the data redundancy is up to 21.30%, the consensus verification rate is 150.33 times per second, the block generation rate is 20.83 blocks per minute, and the equivalent data throughput is 12.21 transactions per second. This demonstrates that the proposed method effectively addresses the challenges of block size, data redundancy, consensus algorithm efficiency, and data throughput in blockchain technology. The findings demonstrate that the structures ensure legal, uniform, and authoritative spatial planning, and advance the application of blockchain technology in relevant fields. Additionally, we explored the application of a blockchain data structure in spatial planning monitoring and early warning. This technology can be further studied and applied in related fields.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13080290\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080290","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Spatial Planning Data Structure Based on Blockchain Technology
Spatial planning requires ensuring the legality, uniformity, authority, and relevance of data. Blockchain technology, characterized by tamper-proofing, complete record-keeping, and process traceability, may effectively organize and manage spatial planning data. This study introduces blockchain technology to address common spatial planning problems, such as planning overlaps and conflicts. We developed a block structure, chain structure, and consensus algorithms tailored for spatial planning. To meet the data management requirements of these structures, we devised a primary unit division method based on the space and population standards of the 15 min life circle, using the Point Cloud Density Tiler. The validation experiments were conducted using the Hyperledger Fabric 2.0 technology framework in Changsha City, Hunan Province, China, with the division method validated against the number and distribution of public service facilities. The validation results show that during the data storage process, the block size remains below 1.00 MB, the data redundancy is up to 21.30%, the consensus verification rate is 150.33 times per second, the block generation rate is 20.83 blocks per minute, and the equivalent data throughput is 12.21 transactions per second. This demonstrates that the proposed method effectively addresses the challenges of block size, data redundancy, consensus algorithm efficiency, and data throughput in blockchain technology. The findings demonstrate that the structures ensure legal, uniform, and authoritative spatial planning, and advance the application of blockchain technology in relevant fields. Additionally, we explored the application of a blockchain data structure in spatial planning monitoring and early warning. This technology can be further studied and applied in related fields.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.