整合序列后向选择 (SBS) 和 CatBoost 技术,绘制流域尺度的雪崩易感性地图

IF 2.8 3区 地球科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sinem Cetinkaya, Sultan Kocaman
{"title":"整合序列后向选择 (SBS) 和 CatBoost 技术,绘制流域尺度的雪崩易感性地图","authors":"Sinem Cetinkaya, Sultan Kocaman","doi":"10.3390/ijgi13090312","DOIUrl":null,"url":null,"abstract":"Snow avalanche susceptibility (AS) mapping is a crucial step in predicting and mitigating avalanche risks in mountainous regions. The conditioning factors used in AS modeling are diverse, and the optimal set of factors depends on the environmental and geological characteristics of the region. Using a sub-optimal set of input features with a data-driven machine learning (ML) method can lead to challenges like dealing with high-dimensional data, overfitting, and reduced model generalization. This study implemented a robust framework involving the Sequential Backward Selection (SBS) algorithm and a decision-tree based ML model, CatBoost, for the automatic selection of predictive variables for AS mapping. A comprehensive inventory of a large avalanche period, previously derived from satellite images, was used for the investigations in three distinct catchment areas in the Swiss Alps. The integrated SBS-CatBoost approach achieved very high classification accuracies between 94% and 97% for the three catchments. In addition, the Shapley additive explanations (SHAP) method was employed to analyze the contributions of each feature to avalanche occurrences. The proposed methodology revealed the benefits of integrating advanced feature selection algorithms with ML techniques for AS assessment. We aimed to contribute to avalanche hazard knowledge by assessing the impact of each feature in model learning.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Sequential Backward Selection (SBS) and CatBoost for Snow Avalanche Susceptibility Mapping at Catchment Scale\",\"authors\":\"Sinem Cetinkaya, Sultan Kocaman\",\"doi\":\"10.3390/ijgi13090312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snow avalanche susceptibility (AS) mapping is a crucial step in predicting and mitigating avalanche risks in mountainous regions. The conditioning factors used in AS modeling are diverse, and the optimal set of factors depends on the environmental and geological characteristics of the region. Using a sub-optimal set of input features with a data-driven machine learning (ML) method can lead to challenges like dealing with high-dimensional data, overfitting, and reduced model generalization. This study implemented a robust framework involving the Sequential Backward Selection (SBS) algorithm and a decision-tree based ML model, CatBoost, for the automatic selection of predictive variables for AS mapping. A comprehensive inventory of a large avalanche period, previously derived from satellite images, was used for the investigations in three distinct catchment areas in the Swiss Alps. The integrated SBS-CatBoost approach achieved very high classification accuracies between 94% and 97% for the three catchments. In addition, the Shapley additive explanations (SHAP) method was employed to analyze the contributions of each feature to avalanche occurrences. The proposed methodology revealed the benefits of integrating advanced feature selection algorithms with ML techniques for AS assessment. We aimed to contribute to avalanche hazard knowledge by assessing the impact of each feature in model learning.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090312\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090312","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

雪崩易发性(AS)绘图是预测和减轻山区雪崩风险的关键一步。雪崩易感性建模中使用的条件因素多种多样,最佳因素集取决于该地区的环境和地质特征。在数据驱动的机器学习(ML)方法中使用一组次优的输入特征,会导致处理高维数据、过拟合和模型泛化能力降低等挑战。本研究实施了一个稳健的框架,其中包括序列后向选择(SBS)算法和基于决策树的 ML 模型 CatBoost,用于自动选择 AS 映射的预测变量。在瑞士阿尔卑斯山三个不同的集水区进行调查时,使用了以前从卫星图像中获得的大型雪崩期综合清单。综合 SBS-CatBoost 方法在三个集水区取得了 94% 至 97% 的极高分类准确率。此外,还采用了夏普利加法解释(SHAP)方法来分析每个特征对雪崩发生的贡献。所提出的方法揭示了将先进的特征选择算法与用于雪崩评估的 ML 技术相结合的益处。我们的目标是通过评估每个特征在模型学习中的影响,为雪崩危害知识做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Sequential Backward Selection (SBS) and CatBoost for Snow Avalanche Susceptibility Mapping at Catchment Scale
Snow avalanche susceptibility (AS) mapping is a crucial step in predicting and mitigating avalanche risks in mountainous regions. The conditioning factors used in AS modeling are diverse, and the optimal set of factors depends on the environmental and geological characteristics of the region. Using a sub-optimal set of input features with a data-driven machine learning (ML) method can lead to challenges like dealing with high-dimensional data, overfitting, and reduced model generalization. This study implemented a robust framework involving the Sequential Backward Selection (SBS) algorithm and a decision-tree based ML model, CatBoost, for the automatic selection of predictive variables for AS mapping. A comprehensive inventory of a large avalanche period, previously derived from satellite images, was used for the investigations in three distinct catchment areas in the Swiss Alps. The integrated SBS-CatBoost approach achieved very high classification accuracies between 94% and 97% for the three catchments. In addition, the Shapley additive explanations (SHAP) method was employed to analyze the contributions of each feature to avalanche occurrences. The proposed methodology revealed the benefits of integrating advanced feature selection algorithms with ML techniques for AS assessment. We aimed to contribute to avalanche hazard knowledge by assessing the impact of each feature in model learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS International Journal of Geo-Information
ISPRS International Journal of Geo-Information GEOGRAPHY, PHYSICALREMOTE SENSING&nb-REMOTE SENSING
CiteScore
6.90
自引率
11.80%
发文量
520
审稿时长
19.87 days
期刊介绍: ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信