由网状电纺丝膜制成的鱼网启发式三维支架促进骨质疏松性骨再生

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lingfei Xiao, Huifan Liu, Shujuan Wu, Huayi Huang, Yuanlong Xie, Renxiong Wei, Jun Lei, Yifeng Lei, Longjian Xue, Feifei Yan, Zhen Geng, Lin Cai
{"title":"由网状电纺丝膜制成的鱼网启发式三维支架促进骨质疏松性骨再生","authors":"Lingfei Xiao, Huifan Liu, Shujuan Wu, Huayi Huang, Yuanlong Xie, Renxiong Wei, Jun Lei, Yifeng Lei, Longjian Xue, Feifei Yan, Zhen Geng, Lin Cai","doi":"10.1007/s42765-024-00451-3","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis is a degenerative disease caused by an imbalance between osteoblast and osteoclast activity. Repairing osteoporotic bone defects is challenging due to decreased osteogenesis, increased osteoclast activity, and impaired angiogenesis. To address this challenge, a novel scaffold, inspired by the structure of multilayer fishing nets, is developed through a combination of template-assisted electrospinning and advanced three-dimensional (3D) printing technologies. The 3D nanofiber scaffold exhibits a hierarchical porous architecture. This design maintains the high specific surface area and extracellular matrix (ECM) mimicry of the nanofiber membrane. Additionally, the sparsely distributed nanofibers within the mesh-like structure facilitate cell infiltration. This unique topological configuration, particularly the strontium-hydroxyapatite (Sr-HAp)-enriched polycaprolactone/silk fibroin nanofibers, plays a critical role in synergistically promoting angiogenesis, enhancing osteogenesis, and suppressing osteoclast differentiation. In an osteoporotic cranial bone defect model, the scaffold demonstrates an exceptional repair efficiency of nearly 100% within 8 weeks, marked by significant new bone formation throughout the implanted area. In conclusion, our approach, which leverages intricate biomimicry and strategic active ion release, emerges as a highly promising strategy for repairing osteoporotic bone defects.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"2 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration\",\"authors\":\"Lingfei Xiao, Huifan Liu, Shujuan Wu, Huayi Huang, Yuanlong Xie, Renxiong Wei, Jun Lei, Yifeng Lei, Longjian Xue, Feifei Yan, Zhen Geng, Lin Cai\",\"doi\":\"10.1007/s42765-024-00451-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteoporosis is a degenerative disease caused by an imbalance between osteoblast and osteoclast activity. Repairing osteoporotic bone defects is challenging due to decreased osteogenesis, increased osteoclast activity, and impaired angiogenesis. To address this challenge, a novel scaffold, inspired by the structure of multilayer fishing nets, is developed through a combination of template-assisted electrospinning and advanced three-dimensional (3D) printing technologies. The 3D nanofiber scaffold exhibits a hierarchical porous architecture. This design maintains the high specific surface area and extracellular matrix (ECM) mimicry of the nanofiber membrane. Additionally, the sparsely distributed nanofibers within the mesh-like structure facilitate cell infiltration. This unique topological configuration, particularly the strontium-hydroxyapatite (Sr-HAp)-enriched polycaprolactone/silk fibroin nanofibers, plays a critical role in synergistically promoting angiogenesis, enhancing osteogenesis, and suppressing osteoclast differentiation. In an osteoporotic cranial bone defect model, the scaffold demonstrates an exceptional repair efficiency of nearly 100% within 8 weeks, marked by significant new bone formation throughout the implanted area. In conclusion, our approach, which leverages intricate biomimicry and strategic active ion release, emerges as a highly promising strategy for repairing osteoporotic bone defects.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00451-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00451-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症是一种退行性疾病,由成骨细胞和破骨细胞活动失衡引起。由于成骨细胞活动减少、破骨细胞活动增加以及血管生成受损,修复骨质疏松症骨缺损具有挑战性。为了应对这一挑战,我们结合模板辅助电纺丝和先进的三维(3D)打印技术,受多层渔网结构的启发,开发出一种新型支架。三维纳米纤维支架呈现出分层多孔结构。这种设计保持了纳米纤维膜的高比表面积和细胞外基质(ECM)模拟。此外,网状结构中稀疏分布的纳米纤维有利于细胞浸润。这种独特的拓扑结构,尤其是富含锶-羟基磷灰石(Sr-HAp)的聚己内酯/蚕丝纤维素纳米纤维,在协同促进血管生成、增强成骨和抑制破骨细胞分化方面发挥了关键作用。在骨质疏松性颅骨缺损模型中,该支架在 8 周内的修复效率接近 100%,整个植入区域都有大量新骨形成。总之,我们的方法利用错综复杂的生物模拟和战略性活性离子释放,是一种极具前景的骨质疏松性骨缺损修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration

Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration

Osteoporosis is a degenerative disease caused by an imbalance between osteoblast and osteoclast activity. Repairing osteoporotic bone defects is challenging due to decreased osteogenesis, increased osteoclast activity, and impaired angiogenesis. To address this challenge, a novel scaffold, inspired by the structure of multilayer fishing nets, is developed through a combination of template-assisted electrospinning and advanced three-dimensional (3D) printing technologies. The 3D nanofiber scaffold exhibits a hierarchical porous architecture. This design maintains the high specific surface area and extracellular matrix (ECM) mimicry of the nanofiber membrane. Additionally, the sparsely distributed nanofibers within the mesh-like structure facilitate cell infiltration. This unique topological configuration, particularly the strontium-hydroxyapatite (Sr-HAp)-enriched polycaprolactone/silk fibroin nanofibers, plays a critical role in synergistically promoting angiogenesis, enhancing osteogenesis, and suppressing osteoclast differentiation. In an osteoporotic cranial bone defect model, the scaffold demonstrates an exceptional repair efficiency of nearly 100% within 8 weeks, marked by significant new bone formation throughout the implanted area. In conclusion, our approach, which leverages intricate biomimicry and strategic active ion release, emerges as a highly promising strategy for repairing osteoporotic bone defects.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信