{"title":"CSMNER: 面向中文社交媒体的地名实体识别模型","authors":"Yuyang Qi, Renjian Zhai, Fang Wu, Jichong Yin, Xianyong Gong, Li Zhu, Haikun Yu","doi":"10.3390/ijgi13090311","DOIUrl":null,"url":null,"abstract":"In the era of information explosion, Chinese social media has become a repository for massive geographic information; however, its unique unstructured nature and diverse expressions are challenging to toponym entity recognition. To address this problem, we propose a Chinese social media named entity recognition (CSMNER) model to improve the accuracy and robustness of toponym recognition in Chinese social media texts. By combining the BERT (Bidirectional Encoder Representations from Transformers) pre-trained model with an improved IDCNN-BiLSTM-CRF (Iterated Dilated Convolutional Neural Network- Bidirectional Long Short-Term Memory- Conditional Random Field) architecture, this study innovatively incorporates a boundary extension module to effectively extract the local boundary features and contextual semantic features of the toponym, successfully addressing the recognition challenges posed by noise interference and language expression variability. To verify the effectiveness of the model, experiments were carried out on three datasets: WeiboNER, MSRA, and the Chinese social named entity recognition (CSNER) dataset, a self-built named entity recognition dataset. Compared with the existing models, CSMNER achieves significant performance improvement in toponym recognition tasks.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"31 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSMNER: A Toponym Entity Recognition Model for Chinese Social Media\",\"authors\":\"Yuyang Qi, Renjian Zhai, Fang Wu, Jichong Yin, Xianyong Gong, Li Zhu, Haikun Yu\",\"doi\":\"10.3390/ijgi13090311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of information explosion, Chinese social media has become a repository for massive geographic information; however, its unique unstructured nature and diverse expressions are challenging to toponym entity recognition. To address this problem, we propose a Chinese social media named entity recognition (CSMNER) model to improve the accuracy and robustness of toponym recognition in Chinese social media texts. By combining the BERT (Bidirectional Encoder Representations from Transformers) pre-trained model with an improved IDCNN-BiLSTM-CRF (Iterated Dilated Convolutional Neural Network- Bidirectional Long Short-Term Memory- Conditional Random Field) architecture, this study innovatively incorporates a boundary extension module to effectively extract the local boundary features and contextual semantic features of the toponym, successfully addressing the recognition challenges posed by noise interference and language expression variability. To verify the effectiveness of the model, experiments were carried out on three datasets: WeiboNER, MSRA, and the Chinese social named entity recognition (CSNER) dataset, a self-built named entity recognition dataset. Compared with the existing models, CSMNER achieves significant performance improvement in toponym recognition tasks.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090311\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090311","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
CSMNER: A Toponym Entity Recognition Model for Chinese Social Media
In the era of information explosion, Chinese social media has become a repository for massive geographic information; however, its unique unstructured nature and diverse expressions are challenging to toponym entity recognition. To address this problem, we propose a Chinese social media named entity recognition (CSMNER) model to improve the accuracy and robustness of toponym recognition in Chinese social media texts. By combining the BERT (Bidirectional Encoder Representations from Transformers) pre-trained model with an improved IDCNN-BiLSTM-CRF (Iterated Dilated Convolutional Neural Network- Bidirectional Long Short-Term Memory- Conditional Random Field) architecture, this study innovatively incorporates a boundary extension module to effectively extract the local boundary features and contextual semantic features of the toponym, successfully addressing the recognition challenges posed by noise interference and language expression variability. To verify the effectiveness of the model, experiments were carried out on three datasets: WeiboNER, MSRA, and the Chinese social named entity recognition (CSNER) dataset, a self-built named entity recognition dataset. Compared with the existing models, CSMNER achieves significant performance improvement in toponym recognition tasks.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.