{"title":"一种仿生非对称结构智能伤口敷料,具有湿压双模式传感功能,可进行无创和实时伤口愈合监测","authors":"Shanshan Ding, Xu Jin, Jia Guo, Buxin Kou, Mengyin Chai, Shuang Dou, Gaoling Jin, Huijie Zhang, Ximeng Zhao, Jiayu Ma, Xiuyan Li, Xiaoni Liu, Bin Wang, Xiuqin Zhang","doi":"10.1007/s42765-024-00473-x","DOIUrl":null,"url":null,"abstract":"<p>To mitigate secondary damage from traditional wound dressing removals, this study pioneers an intelligent wound dressing method using a dual-modality sensor for non-invasive, real-time monitoring of the healing process. Harnessing the skin’s architectural blueprint, the dressing employs a three-layered structure with asymmetric wettability, fabricated via advanced electrospinning and screen printing techniques. Central to this design is the MXene@Sodium alginate (SA)/Polylactic acid (PLA) humidity sensor, mimicking a dermal environment with exceptional sensitivity (99%) and response time (0.6 s), ensuring sustained performance over 28 days. A chitosan sponge (CS) layer, incorporated by freeze-drying, optimizes exudate management and expedites healing. The outer layer, a hydrophobic PLA@Ag<sub>3</sub>PO<sub>4</sub> membrane, offers robust antimicrobial efficacy by eliminating 99.99% of bacterial presence. Functionally, this outer skin analog doubles as an ultra-sensitive capacitive-type pressure sensor (199.22 kPa<sup>−1</sup>), with impressive durability over numerous cycles (1500 cycles), capturing subtle pressure fluctuations as wounds heal. In vivo results show that the dressing can prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of open wounds. Integrated with a flexible sensing unit, control circuitry, and bluetooth module, this intelligent dressing paradigm articulates the nuances of wound healing dynamics, heralding a new era in smart healthcare applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Inspired by human skin, a three-layer intelligent wound dressing has been developed that connects wirelessly via bluetooth, enabling real-time monitoring of both humidity and pressure at the wound site. This work holds promise for expanding the applications in the field of wound dressings and advancing intelligent healthcare solutions.</p>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"30 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Biomimetic Asymmetric Structured Intelligent Wound Dressing with Dual-modality Humidity-pressure Sensing for Non-invasive and Real-time Wound Healing Monitoring\",\"authors\":\"Shanshan Ding, Xu Jin, Jia Guo, Buxin Kou, Mengyin Chai, Shuang Dou, Gaoling Jin, Huijie Zhang, Ximeng Zhao, Jiayu Ma, Xiuyan Li, Xiaoni Liu, Bin Wang, Xiuqin Zhang\",\"doi\":\"10.1007/s42765-024-00473-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To mitigate secondary damage from traditional wound dressing removals, this study pioneers an intelligent wound dressing method using a dual-modality sensor for non-invasive, real-time monitoring of the healing process. Harnessing the skin’s architectural blueprint, the dressing employs a three-layered structure with asymmetric wettability, fabricated via advanced electrospinning and screen printing techniques. Central to this design is the MXene@Sodium alginate (SA)/Polylactic acid (PLA) humidity sensor, mimicking a dermal environment with exceptional sensitivity (99%) and response time (0.6 s), ensuring sustained performance over 28 days. A chitosan sponge (CS) layer, incorporated by freeze-drying, optimizes exudate management and expedites healing. The outer layer, a hydrophobic PLA@Ag<sub>3</sub>PO<sub>4</sub> membrane, offers robust antimicrobial efficacy by eliminating 99.99% of bacterial presence. Functionally, this outer skin analog doubles as an ultra-sensitive capacitive-type pressure sensor (199.22 kPa<sup>−1</sup>), with impressive durability over numerous cycles (1500 cycles), capturing subtle pressure fluctuations as wounds heal. In vivo results show that the dressing can prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of open wounds. Integrated with a flexible sensing unit, control circuitry, and bluetooth module, this intelligent dressing paradigm articulates the nuances of wound healing dynamics, heralding a new era in smart healthcare applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3><p>Inspired by human skin, a three-layer intelligent wound dressing has been developed that connects wirelessly via bluetooth, enabling real-time monitoring of both humidity and pressure at the wound site. This work holds promise for expanding the applications in the field of wound dressings and advancing intelligent healthcare solutions.</p>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00473-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00473-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Biomimetic Asymmetric Structured Intelligent Wound Dressing with Dual-modality Humidity-pressure Sensing for Non-invasive and Real-time Wound Healing Monitoring
To mitigate secondary damage from traditional wound dressing removals, this study pioneers an intelligent wound dressing method using a dual-modality sensor for non-invasive, real-time monitoring of the healing process. Harnessing the skin’s architectural blueprint, the dressing employs a three-layered structure with asymmetric wettability, fabricated via advanced electrospinning and screen printing techniques. Central to this design is the MXene@Sodium alginate (SA)/Polylactic acid (PLA) humidity sensor, mimicking a dermal environment with exceptional sensitivity (99%) and response time (0.6 s), ensuring sustained performance over 28 days. A chitosan sponge (CS) layer, incorporated by freeze-drying, optimizes exudate management and expedites healing. The outer layer, a hydrophobic PLA@Ag3PO4 membrane, offers robust antimicrobial efficacy by eliminating 99.99% of bacterial presence. Functionally, this outer skin analog doubles as an ultra-sensitive capacitive-type pressure sensor (199.22 kPa−1), with impressive durability over numerous cycles (1500 cycles), capturing subtle pressure fluctuations as wounds heal. In vivo results show that the dressing can prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of open wounds. Integrated with a flexible sensing unit, control circuitry, and bluetooth module, this intelligent dressing paradigm articulates the nuances of wound healing dynamics, heralding a new era in smart healthcare applications.
Graphical Abstract
Inspired by human skin, a three-layer intelligent wound dressing has been developed that connects wirelessly via bluetooth, enabling real-time monitoring of both humidity and pressure at the wound site. This work holds promise for expanding the applications in the field of wound dressings and advancing intelligent healthcare solutions.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.