用于柔性独立式热电薄膜的乙烯连接聚合物框架的纳米/微纤维工程技术

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang
{"title":"用于柔性独立式热电薄膜的乙烯连接聚合物框架的纳米/微纤维工程技术","authors":"Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang","doi":"10.1007/s42765-024-00477-7","DOIUrl":null,"url":null,"abstract":"<p>Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C<sub>18</sub>N<sub>3</sub>-COF exhibited the highest power factor of 68.93 μW/(m K<sup>2</sup>) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m<sup>2</sup> at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-/Micro-fiber Engineering of Vinylene-Linked Polymeric Frameworks for Flexible Free-Standing Thermoelectric Films\",\"authors\":\"Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang\",\"doi\":\"10.1007/s42765-024-00477-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C<sub>18</sub>N<sub>3</sub>-COF exhibited the highest power factor of 68.93 μW/(m K<sup>2</sup>) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m<sup>2</sup> at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00477-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00477-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于聚合物的热电(TE)薄膜具有多个突出优点,包括可获得多组分成分、多功能图案制造和易于集成。因此,这些材料作为可穿戴设备的持续电源具有巨大的潜力。在此,我们以 2, 4, 6-三甲基-1, 3, 5-三嗪为核心单体,通过克诺文纳格尔缩合法制备了一系列乙烯基连接的三唑共价有机框架(COFs)。通过改变聚苯结构单元,制备的 COF 可生成长度和直径可调的纳米或微纤维形态。因此,这些 COF 纤维很容易与单壁碳纳米管(SWCNT)复合,通过简单的真空过滤方法形成柔性独立薄膜。含有 30 wt% g-C18N3-COF 的薄膜样品在 420 K 时的功率因数最高,达到 68.93 μW/(m K2)。在 35 K 的温差条件下,经操控的四脚柔性热电发生器(f-TEG)可释放出 343.5 nW 和 0.32 W/m2 的最大输出功率和功率密度。在半径为 15 毫米的条件下弯曲 1000 次后,制成的 f-TEG 电阻变化率小于 5%,表现出出色的稳定性和灵活性。这项工作不仅拓宽了 COF 材料的潜在应用范围,还为能量收集提供了一种新的制造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nano-/Micro-fiber Engineering of Vinylene-Linked Polymeric Frameworks for Flexible Free-Standing Thermoelectric Films

Nano-/Micro-fiber Engineering of Vinylene-Linked Polymeric Frameworks for Flexible Free-Standing Thermoelectric Films

Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C18N3-COF exhibited the highest power factor of 68.93 μW/(m K2) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m2 at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信