Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang
{"title":"用于柔性独立式热电薄膜的乙烯连接聚合物框架的纳米/微纤维工程技术","authors":"Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang","doi":"10.1007/s42765-024-00477-7","DOIUrl":null,"url":null,"abstract":"<p>Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C<sub>18</sub>N<sub>3</sub>-COF exhibited the highest power factor of 68.93 μW/(m K<sup>2</sup>) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m<sup>2</sup> at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-/Micro-fiber Engineering of Vinylene-Linked Polymeric Frameworks for Flexible Free-Standing Thermoelectric Films\",\"authors\":\"Rongmei Wang, Zixing Zhang, Jie Qin, Qiufeng Meng, Yong Du, Fan Zhang\",\"doi\":\"10.1007/s42765-024-00477-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C<sub>18</sub>N<sub>3</sub>-COF exhibited the highest power factor of 68.93 μW/(m K<sup>2</sup>) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m<sup>2</sup> at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00477-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00477-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nano-/Micro-fiber Engineering of Vinylene-Linked Polymeric Frameworks for Flexible Free-Standing Thermoelectric Films
Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C18N3-COF exhibited the highest power factor of 68.93 μW/(m K2) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m2 at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.