{"title":"用于卫星服务系统的高效且可表达的完全策略隐藏密文策略属性加密方案","authors":"Jiaoli Shi, Chao Hu, Shunli Zhang, Qing Zhou, Zhuolin Mei, Shimao Yao, Anyuan Deng","doi":"10.3390/ijgi13090321","DOIUrl":null,"url":null,"abstract":"Satellite service systems transfer data from satellite providers to the big data industry, which includes data traders and data analytics companies. This system needs to provide access to numerous users whose specific identities are unknown. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows unidentified users with the proper attributes to decrypt data, providing fine-grained access control of data. However, traditional CP-ABE does not protect access policies. Access policies are uploaded to the cloud, stored, and downloaded in plain text, making them vulnerable to privacy breaches. When the access policy is completely hidden, users need to use their own attributes to try matching one by one, which is an inefficient process. In order to efficiently hide the access policy fully, this paper introduces a new efficient and expressive Fully Policy-Hidden Ciphertext-Policy Attribute-Based Encryption scheme (CP-ABE-FPH), which integrates the 2-way handshake O-PSI method with the ROBDD method. The integration offers advantages: (1) High efficiency and high expressiveness. The access policy using ROBDD is highly expressive but computationally intensive due to its recursive nature. This shortcoming is overcome in CP-ABE-FPH using the proposed O-PSI method, and the access policy is matched quickly and secretly. (2) High flexibility. The decryption process does not require the owner or the Key Generation Center (KGC) to be online, and system attributes can be added at any time. Security analysis shows that the access policy is fully hidden. Efficiency analysis and simulation results show that the proposed scheme is highly efficient in decryption compared with existing schemes.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"272 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient and Expressive Fully Policy-Hidden Ciphertext-Policy Attribute-Based Encryption Scheme for Satellite Service Systems\",\"authors\":\"Jiaoli Shi, Chao Hu, Shunli Zhang, Qing Zhou, Zhuolin Mei, Shimao Yao, Anyuan Deng\",\"doi\":\"10.3390/ijgi13090321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite service systems transfer data from satellite providers to the big data industry, which includes data traders and data analytics companies. This system needs to provide access to numerous users whose specific identities are unknown. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows unidentified users with the proper attributes to decrypt data, providing fine-grained access control of data. However, traditional CP-ABE does not protect access policies. Access policies are uploaded to the cloud, stored, and downloaded in plain text, making them vulnerable to privacy breaches. When the access policy is completely hidden, users need to use their own attributes to try matching one by one, which is an inefficient process. In order to efficiently hide the access policy fully, this paper introduces a new efficient and expressive Fully Policy-Hidden Ciphertext-Policy Attribute-Based Encryption scheme (CP-ABE-FPH), which integrates the 2-way handshake O-PSI method with the ROBDD method. The integration offers advantages: (1) High efficiency and high expressiveness. The access policy using ROBDD is highly expressive but computationally intensive due to its recursive nature. This shortcoming is overcome in CP-ABE-FPH using the proposed O-PSI method, and the access policy is matched quickly and secretly. (2) High flexibility. The decryption process does not require the owner or the Key Generation Center (KGC) to be online, and system attributes can be added at any time. Security analysis shows that the access policy is fully hidden. Efficiency analysis and simulation results show that the proposed scheme is highly efficient in decryption compared with existing schemes.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090321\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090321","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Efficient and Expressive Fully Policy-Hidden Ciphertext-Policy Attribute-Based Encryption Scheme for Satellite Service Systems
Satellite service systems transfer data from satellite providers to the big data industry, which includes data traders and data analytics companies. This system needs to provide access to numerous users whose specific identities are unknown. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows unidentified users with the proper attributes to decrypt data, providing fine-grained access control of data. However, traditional CP-ABE does not protect access policies. Access policies are uploaded to the cloud, stored, and downloaded in plain text, making them vulnerable to privacy breaches. When the access policy is completely hidden, users need to use their own attributes to try matching one by one, which is an inefficient process. In order to efficiently hide the access policy fully, this paper introduces a new efficient and expressive Fully Policy-Hidden Ciphertext-Policy Attribute-Based Encryption scheme (CP-ABE-FPH), which integrates the 2-way handshake O-PSI method with the ROBDD method. The integration offers advantages: (1) High efficiency and high expressiveness. The access policy using ROBDD is highly expressive but computationally intensive due to its recursive nature. This shortcoming is overcome in CP-ABE-FPH using the proposed O-PSI method, and the access policy is matched quickly and secretly. (2) High flexibility. The decryption process does not require the owner or the Key Generation Center (KGC) to be online, and system attributes can be added at any time. Security analysis shows that the access policy is fully hidden. Efficiency analysis and simulation results show that the proposed scheme is highly efficient in decryption compared with existing schemes.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.