论对抗性风险分析解决方案的全局稳健性

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jinming Yang, Chaitanya Joshi, Fabrizio Ruggeri
{"title":"论对抗性风险分析解决方案的全局稳健性","authors":"Jinming Yang, Chaitanya Joshi, Fabrizio Ruggeri","doi":"10.1111/stan.12361","DOIUrl":null,"url":null,"abstract":"Adversarial Risk Analysis (ARA) can be a more realistic and practical alternative to traditional game theoretic or decision theoretic approaches for modeling strategic decision‐making in the presence of an adversary. ARA relies on quantifying the decision‐maker's (DM's) uncertainties about the adversary's strategic thinking, choices and utilities via probability distributions to identify the optimal solution for the DM. ARA solution will be sensitive to the choices of prior distributions used for modelling the expert beliefs. Yet, to date, no mathematical results to characterize the robustness of the ARA solution to the misspecification of one or more prior distributions exist. Prior elicitation is known to be challenging. We present the very first mathematical results on the global robustness of the ARA solution. We use the distorted band class of priors and establish the conditions under which an ordering on the ARA solution can be established when modelling the first‐price sealed‐bid auctions using the <jats:italic>nonstrategic play</jats:italic> and <jats:italic>level‐</jats:italic> thinking solution concepts. We illustrate these results using numerical examples and discuss further areas of research.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On global robustness of an adversarial risk analysis solution\",\"authors\":\"Jinming Yang, Chaitanya Joshi, Fabrizio Ruggeri\",\"doi\":\"10.1111/stan.12361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial Risk Analysis (ARA) can be a more realistic and practical alternative to traditional game theoretic or decision theoretic approaches for modeling strategic decision‐making in the presence of an adversary. ARA relies on quantifying the decision‐maker's (DM's) uncertainties about the adversary's strategic thinking, choices and utilities via probability distributions to identify the optimal solution for the DM. ARA solution will be sensitive to the choices of prior distributions used for modelling the expert beliefs. Yet, to date, no mathematical results to characterize the robustness of the ARA solution to the misspecification of one or more prior distributions exist. Prior elicitation is known to be challenging. We present the very first mathematical results on the global robustness of the ARA solution. We use the distorted band class of priors and establish the conditions under which an ordering on the ARA solution can be established when modelling the first‐price sealed‐bid auctions using the <jats:italic>nonstrategic play</jats:italic> and <jats:italic>level‐</jats:italic> thinking solution concepts. We illustrate these results using numerical examples and discuss further areas of research.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

与传统的博弈论或决策论方法相比,对抗性风险分析(ARA)是一种更现实、更实用的方法,可用于在有对手的情况下建立战略决策模型。对抗风险分析依赖于通过概率分布量化决策者(DM)对对手战略思维、选择和效用的不确定性,从而为决策者确定最优解。ARA 解决方案对用于模拟专家信念的先验分布的选择非常敏感。然而,迄今为止,还没有任何数学结果可以描述 ARA 解决方案对一个或多个先验分布的错误指定的鲁棒性。众所周知,先验激发具有挑战性。我们首次提出了 ARA 解决方案全局鲁棒性的数学结果。我们使用了扭曲带类先验,并建立了一些条件,在这些条件下,使用非战略博弈和水平思维解决方案概念对第一价格密封出价拍卖进行建模时,可以建立 ARA 解决方案的排序。我们用数字示例说明了这些结果,并讨论了进一步的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On global robustness of an adversarial risk analysis solution
Adversarial Risk Analysis (ARA) can be a more realistic and practical alternative to traditional game theoretic or decision theoretic approaches for modeling strategic decision‐making in the presence of an adversary. ARA relies on quantifying the decision‐maker's (DM's) uncertainties about the adversary's strategic thinking, choices and utilities via probability distributions to identify the optimal solution for the DM. ARA solution will be sensitive to the choices of prior distributions used for modelling the expert beliefs. Yet, to date, no mathematical results to characterize the robustness of the ARA solution to the misspecification of one or more prior distributions exist. Prior elicitation is known to be challenging. We present the very first mathematical results on the global robustness of the ARA solution. We use the distorted band class of priors and establish the conditions under which an ordering on the ARA solution can be established when modelling the first‐price sealed‐bid auctions using the nonstrategic play and level‐ thinking solution concepts. We illustrate these results using numerical examples and discuss further areas of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信