Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi
{"title":"利用响应面法(RSM)优化卡努吉钛铁矿的氢还原反应","authors":"Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi","doi":"10.1007/s40831-024-00904-4","DOIUrl":null,"url":null,"abstract":"<p>The hydrogen reduction of Kahnuj ilmenite concentrate (Kerman, Iran) was studied under different process parameters using Response Surface Methodology (RSM). The effect of major influencing parameters on the reductive mass loss of pellets made from ilmenite concentrate was elucidated. The independent variables examined consisted of the reduction temperature range of 850–1050 °C, pre-oxidation temperature range of 800–1000 °C, and gas flow rates of 200–500 mL min<sup>−1</sup>. It was found that the reduction temperature and pre-oxidation temperature were the most significant factors affecting the mass loss. The optimum mass loss conditions were determined to be a reduction temperature of 1045 °C, pre-oxidation temperature of 860 °C, and hydrogen flow rate of 217 mL min<sup>−1</sup>. The optimal experimental mass loss of 15.1% was in accordance with the predicted value of 15.3%. The ilmenite phase transformed into metallic iron, rutile, reduced rutile, and M<sub>3</sub>O<sub>5</sub> solid solution through the reduction process.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"38 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Hydrogen Reduction of Kahnuj Ilmenite Using Response Surface Methodology (RSM)\",\"authors\":\"Leila Ghasemi, Seyed Hossein Seyedein, Mandana Adeli, Mohammad Reza Aboutalebi\",\"doi\":\"10.1007/s40831-024-00904-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hydrogen reduction of Kahnuj ilmenite concentrate (Kerman, Iran) was studied under different process parameters using Response Surface Methodology (RSM). The effect of major influencing parameters on the reductive mass loss of pellets made from ilmenite concentrate was elucidated. The independent variables examined consisted of the reduction temperature range of 850–1050 °C, pre-oxidation temperature range of 800–1000 °C, and gas flow rates of 200–500 mL min<sup>−1</sup>. It was found that the reduction temperature and pre-oxidation temperature were the most significant factors affecting the mass loss. The optimum mass loss conditions were determined to be a reduction temperature of 1045 °C, pre-oxidation temperature of 860 °C, and hydrogen flow rate of 217 mL min<sup>−1</sup>. The optimal experimental mass loss of 15.1% was in accordance with the predicted value of 15.3%. The ilmenite phase transformed into metallic iron, rutile, reduced rutile, and M<sub>3</sub>O<sub>5</sub> solid solution through the reduction process.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00904-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00904-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Optimization of Hydrogen Reduction of Kahnuj Ilmenite Using Response Surface Methodology (RSM)
The hydrogen reduction of Kahnuj ilmenite concentrate (Kerman, Iran) was studied under different process parameters using Response Surface Methodology (RSM). The effect of major influencing parameters on the reductive mass loss of pellets made from ilmenite concentrate was elucidated. The independent variables examined consisted of the reduction temperature range of 850–1050 °C, pre-oxidation temperature range of 800–1000 °C, and gas flow rates of 200–500 mL min−1. It was found that the reduction temperature and pre-oxidation temperature were the most significant factors affecting the mass loss. The optimum mass loss conditions were determined to be a reduction temperature of 1045 °C, pre-oxidation temperature of 860 °C, and hydrogen flow rate of 217 mL min−1. The optimal experimental mass loss of 15.1% was in accordance with the predicted value of 15.3%. The ilmenite phase transformed into metallic iron, rutile, reduced rutile, and M3O5 solid solution through the reduction process.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.