{"title":"回收铅酸蓄电池中废铅膏的新兴电化学技术","authors":"Lun-Ao Ouyang, Yapeng He, Puqiang He, Jianfeng Zhou, Hui Huang, Zhongcheng Guo","doi":"10.1007/s40831-024-00928-w","DOIUrl":null,"url":null,"abstract":"<p>Spent lead paste (SLP) obtained from end-of-life lead-acid batteries is regarded as an essential secondary lead resource. Recycling lead from spent lead-acid batteries has been demonstrated to be of paramount significance for both economic expansion and environmental preservation. Pyrometallurgical and hydrometallurgical approaches are proposed to recover metallic lead or lead oxide from SLP. However, traditional pyrometallurgical techniques are plagued by high energy consumption and substantial environmental pollution, whereas hydrometallurgical processes suffer from excessive reagent consumption and wastewater emissions. Benefiting from the technical advantages, electrochemical techniques in the recycling of SLP have attracted extensive interest in the last few years. This review provides a comprehensive summary of electrochemical approaches, technical feasibility, and improvements in recycling SLP. These methods mainly consist of leaching-electrowinning, direct solid-phase electrolysis, suspension electrolysis, electrolysis in ionic liquids, and electrolysis in molten salt. The recent research advances in electrochemical recycling of SLP are discussed. The present state-of-the art challenges and issues including energy consumption and impurity behavior in electrochemical treating SLP are also addressed.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"9 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries\",\"authors\":\"Lun-Ao Ouyang, Yapeng He, Puqiang He, Jianfeng Zhou, Hui Huang, Zhongcheng Guo\",\"doi\":\"10.1007/s40831-024-00928-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spent lead paste (SLP) obtained from end-of-life lead-acid batteries is regarded as an essential secondary lead resource. Recycling lead from spent lead-acid batteries has been demonstrated to be of paramount significance for both economic expansion and environmental preservation. Pyrometallurgical and hydrometallurgical approaches are proposed to recover metallic lead or lead oxide from SLP. However, traditional pyrometallurgical techniques are plagued by high energy consumption and substantial environmental pollution, whereas hydrometallurgical processes suffer from excessive reagent consumption and wastewater emissions. Benefiting from the technical advantages, electrochemical techniques in the recycling of SLP have attracted extensive interest in the last few years. This review provides a comprehensive summary of electrochemical approaches, technical feasibility, and improvements in recycling SLP. These methods mainly consist of leaching-electrowinning, direct solid-phase electrolysis, suspension electrolysis, electrolysis in ionic liquids, and electrolysis in molten salt. The recent research advances in electrochemical recycling of SLP are discussed. The present state-of-the art challenges and issues including energy consumption and impurity behavior in electrochemical treating SLP are also addressed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00928-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00928-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries
Spent lead paste (SLP) obtained from end-of-life lead-acid batteries is regarded as an essential secondary lead resource. Recycling lead from spent lead-acid batteries has been demonstrated to be of paramount significance for both economic expansion and environmental preservation. Pyrometallurgical and hydrometallurgical approaches are proposed to recover metallic lead or lead oxide from SLP. However, traditional pyrometallurgical techniques are plagued by high energy consumption and substantial environmental pollution, whereas hydrometallurgical processes suffer from excessive reagent consumption and wastewater emissions. Benefiting from the technical advantages, electrochemical techniques in the recycling of SLP have attracted extensive interest in the last few years. This review provides a comprehensive summary of electrochemical approaches, technical feasibility, and improvements in recycling SLP. These methods mainly consist of leaching-electrowinning, direct solid-phase electrolysis, suspension electrolysis, electrolysis in ionic liquids, and electrolysis in molten salt. The recent research advances in electrochemical recycling of SLP are discussed. The present state-of-the art challenges and issues including energy consumption and impurity behavior in electrochemical treating SLP are also addressed.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.