$${{mathbb {R}}^n$ 子漫游的断层傅立叶扩展特性

Jonathan Bennett, Shohei Nakamura, Shobu Shiraki
{"title":"$${{mathbb {R}}^n$ 子漫游的断层傅立叶扩展特性","authors":"Jonathan Bennett, Shohei Nakamura, Shobu Shiraki","doi":"10.1007/s00029-024-00970-2","DOIUrl":null,"url":null,"abstract":"<p>We establish identities for the composition <span>\\(T_{k,n}(|\\widehat{gd\\sigma }|^2)\\)</span>, where <span>\\(g\\mapsto \\widehat{gd\\sigma }\\)</span> is the Fourier extension operator associated with a general smooth <i>k</i>-dimensional submanifold of <span>\\({\\mathbb {R}}^n\\)</span>, and <span>\\(T_{k,n}\\)</span> is the <i>k</i>-plane transform. Several connections to problems in Fourier restriction theory are presented.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomographic Fourier extension identities for submanifolds of $${\\\\mathbb {R}}^n$$\",\"authors\":\"Jonathan Bennett, Shohei Nakamura, Shobu Shiraki\",\"doi\":\"10.1007/s00029-024-00970-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish identities for the composition <span>\\\\(T_{k,n}(|\\\\widehat{gd\\\\sigma }|^2)\\\\)</span>, where <span>\\\\(g\\\\mapsto \\\\widehat{gd\\\\sigma }\\\\)</span> is the Fourier extension operator associated with a general smooth <i>k</i>-dimensional submanifold of <span>\\\\({\\\\mathbb {R}}^n\\\\)</span>, and <span>\\\\(T_{k,n}\\\\)</span> is the <i>k</i>-plane transform. Several connections to problems in Fourier restriction theory are presented.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00970-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00970-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了组成 \(T_{k,n}(|\widehat{gd\sigma }|^2)\) 的等价性,其中 \(g\mapsto \widehat{gd\sigma }\) 是与\({\mathbb {R}}^n\) 的一般光滑 k 维子平面相关的傅里叶扩展算子,而 \(T_{k,n}\) 是 k 平面变换。本文介绍了与傅里叶限制理论问题的若干联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomographic Fourier extension identities for submanifolds of $${\mathbb {R}}^n$$

We establish identities for the composition \(T_{k,n}(|\widehat{gd\sigma }|^2)\), where \(g\mapsto \widehat{gd\sigma }\) is the Fourier extension operator associated with a general smooth k-dimensional submanifold of \({\mathbb {R}}^n\), and \(T_{k,n}\) is the k-plane transform. Several connections to problems in Fourier restriction theory are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信