环上群作用的模块结构

Peter Symonds
{"title":"环上群作用的模块结构","authors":"Peter Symonds","doi":"10.1007/s00029-024-00968-w","DOIUrl":null,"url":null,"abstract":"<p>Consider a finite group <i>G</i> acting on a graded Noetherian <i>k</i>-algebra <i>S</i>, for some field <i>k</i> of characteristic <i>p</i>; for example <i>S</i> might be a polynomial ring. Regard <i>S</i> as a <i>kG</i>-module and consider the multiplicity of a particular indecomposable module as a summand in each degree. We show how this can be described in terms of homological algebra and how it is linked to the geometry of the group action on the spectrum of <i>S</i>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The module structure of a group action on a ring\",\"authors\":\"Peter Symonds\",\"doi\":\"10.1007/s00029-024-00968-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a finite group <i>G</i> acting on a graded Noetherian <i>k</i>-algebra <i>S</i>, for some field <i>k</i> of characteristic <i>p</i>; for example <i>S</i> might be a polynomial ring. Regard <i>S</i> as a <i>kG</i>-module and consider the multiplicity of a particular indecomposable module as a summand in each degree. We show how this can be described in terms of homological algebra and how it is linked to the geometry of the group action on the spectrum of <i>S</i>.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00968-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00968-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个有限群 G 作用于有级 Noetherian k-algebra S,对于某个特征 p 的域 k;例如,S 可能是一个多项式环。把 S 看作一个 kG 模块,并考虑特定不可分解模块作为各阶和的多重性。我们将展示如何用同调代数来描述这一点,以及如何将其与 S 的谱上的群作用几何联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The module structure of a group action on a ring

The module structure of a group action on a ring

Consider a finite group G acting on a graded Noetherian k-algebra S, for some field k of characteristic p; for example S might be a polynomial ring. Regard S as a kG-module and consider the multiplicity of a particular indecomposable module as a summand in each degree. We show how this can be described in terms of homological algebra and how it is linked to the geometry of the group action on the spectrum of S.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信