用于低阶逼近四元数矩阵的高效四元数 CUR 方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Pengling Wu, Kit Ian Kou, Hongmin Cai, Zhaoyuan Yu
{"title":"用于低阶逼近四元数矩阵的高效四元数 CUR 方法","authors":"Pengling Wu, Kit Ian Kou, Hongmin Cai, Zhaoyuan Yu","doi":"10.1007/s11075-024-01923-8","DOIUrl":null,"url":null,"abstract":"<p>The low-rank quaternion matrix approximation has been successfully applied in many applications involving signal processing and color image processing. However, the cost of quaternion models for generating low-rank quaternion matrix approximation is sometimes considerable due to the computation of the quaternion singular value decomposition (QSVD), which limits their application to real large-scale data. To address this deficiency, an efficient quaternion matrix CUR (QMCUR) method for low-rank approximation is suggested, which provides significant acceleration in color image processing. We first explore the QMCUR approximation method, which uses actual columns and rows of the given quaternion matrix, instead of the costly QSVD. Additionally, two different sampling strategies are used to sample the above-selected columns and rows. Then, the perturbation analysis is performed on the QMCUR approximation of noisy versions of low-rank quaternion matrices. And we also employ the proposed QMCUR method to color image recovery problem. Extensive experiments on both synthetic and real data further reveal the superiority of the proposed algorithm compared with other algorithms for getting low-rank approximation, in terms of both efficiency and accuracy.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient quaternion CUR method for low-rank approximation to quaternion matrix\",\"authors\":\"Pengling Wu, Kit Ian Kou, Hongmin Cai, Zhaoyuan Yu\",\"doi\":\"10.1007/s11075-024-01923-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low-rank quaternion matrix approximation has been successfully applied in many applications involving signal processing and color image processing. However, the cost of quaternion models for generating low-rank quaternion matrix approximation is sometimes considerable due to the computation of the quaternion singular value decomposition (QSVD), which limits their application to real large-scale data. To address this deficiency, an efficient quaternion matrix CUR (QMCUR) method for low-rank approximation is suggested, which provides significant acceleration in color image processing. We first explore the QMCUR approximation method, which uses actual columns and rows of the given quaternion matrix, instead of the costly QSVD. Additionally, two different sampling strategies are used to sample the above-selected columns and rows. Then, the perturbation analysis is performed on the QMCUR approximation of noisy versions of low-rank quaternion matrices. And we also employ the proposed QMCUR method to color image recovery problem. Extensive experiments on both synthetic and real data further reveal the superiority of the proposed algorithm compared with other algorithms for getting low-rank approximation, in terms of both efficiency and accuracy.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01923-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01923-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

低阶四元数矩阵近似已成功应用于信号处理和彩色图像处理等许多领域。然而,由于需要计算四元数奇异值分解(QSVD),生成低秩四元数矩阵近似的四元数模型成本有时相当高,这限制了其在实际大规模数据中的应用。针对这一不足,我们提出了一种高效的四元数矩阵 CUR(QMCUR)低秩逼近方法,它能显著加快彩色图像处理速度。我们首先探讨了 QMCUR 近似方法,该方法使用给定四元数矩阵的实际列和行,而不是代价高昂的 QSVD。此外,我们还采用了两种不同的采样策略对上述选定的列和行进行采样。然后,对低阶四元数矩阵噪声版本的 QMCUR 近似进行扰动分析。我们还将提出的 QMCUR 方法用于彩色图像恢复问题。在合成数据和真实数据上进行的大量实验进一步揭示了与其他算法相比,所提出的算法在获取低秩近似值的效率和准确性方面都更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient quaternion CUR method for low-rank approximation to quaternion matrix

Efficient quaternion CUR method for low-rank approximation to quaternion matrix

The low-rank quaternion matrix approximation has been successfully applied in many applications involving signal processing and color image processing. However, the cost of quaternion models for generating low-rank quaternion matrix approximation is sometimes considerable due to the computation of the quaternion singular value decomposition (QSVD), which limits their application to real large-scale data. To address this deficiency, an efficient quaternion matrix CUR (QMCUR) method for low-rank approximation is suggested, which provides significant acceleration in color image processing. We first explore the QMCUR approximation method, which uses actual columns and rows of the given quaternion matrix, instead of the costly QSVD. Additionally, two different sampling strategies are used to sample the above-selected columns and rows. Then, the perturbation analysis is performed on the QMCUR approximation of noisy versions of low-rank quaternion matrices. And we also employ the proposed QMCUR method to color image recovery problem. Extensive experiments on both synthetic and real data further reveal the superiority of the proposed algorithm compared with other algorithms for getting low-rank approximation, in terms of both efficiency and accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信