{"title":"针对 $$H(\\textbf{curl})$$问题的基于边缘的级联多网格方法","authors":"Jinxuan Wang, Kejia Pan, Xiaoxin Wu","doi":"10.1007/s11075-024-01917-6","DOIUrl":null,"url":null,"abstract":"<p>An efficient extrapolation cascadic multigird (EXCMG) method is developed to solve large linear systems resulting from edge element discretizations of 3D <span>\\(H(\\textbf{curl})\\)</span> problems on rectangular meshes. By treating edge unknowns as defined on the midpoints of edges, following the similar idea of the nodal EXCMG method, we design a new prolongation operator for 3D edge-based discretizations, which is used to construct a high-order approximation to the finite element solution on the refined grid. This good initial guess greatly reduces the number of iterations required by the multigrid smoother. Furthermore, the divergence correction technique is employed to further speed up the convergence of the multigrid method. Numerical examples including problems with high-contrast discontinuous coefficients are presented to validate the effectiveness of the proposed EXCMG method. The edge-based EXCMG method is more efficient than the auxiliary-space Maxwell solver (AMS) for definite problems in the considered geometrical configuration, and it can also efficiently solve large-scale indefinite problems encountered in engineering and scientific fields.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Edge-based cascadic multigrid method for $$H(\\\\textbf{curl})$$ problems\",\"authors\":\"Jinxuan Wang, Kejia Pan, Xiaoxin Wu\",\"doi\":\"10.1007/s11075-024-01917-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient extrapolation cascadic multigird (EXCMG) method is developed to solve large linear systems resulting from edge element discretizations of 3D <span>\\\\(H(\\\\textbf{curl})\\\\)</span> problems on rectangular meshes. By treating edge unknowns as defined on the midpoints of edges, following the similar idea of the nodal EXCMG method, we design a new prolongation operator for 3D edge-based discretizations, which is used to construct a high-order approximation to the finite element solution on the refined grid. This good initial guess greatly reduces the number of iterations required by the multigrid smoother. Furthermore, the divergence correction technique is employed to further speed up the convergence of the multigrid method. Numerical examples including problems with high-contrast discontinuous coefficients are presented to validate the effectiveness of the proposed EXCMG method. The edge-based EXCMG method is more efficient than the auxiliary-space Maxwell solver (AMS) for definite problems in the considered geometrical configuration, and it can also efficiently solve large-scale indefinite problems encountered in engineering and scientific fields.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01917-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01917-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Edge-based cascadic multigrid method for $$H(\textbf{curl})$$ problems
An efficient extrapolation cascadic multigird (EXCMG) method is developed to solve large linear systems resulting from edge element discretizations of 3D \(H(\textbf{curl})\) problems on rectangular meshes. By treating edge unknowns as defined on the midpoints of edges, following the similar idea of the nodal EXCMG method, we design a new prolongation operator for 3D edge-based discretizations, which is used to construct a high-order approximation to the finite element solution on the refined grid. This good initial guess greatly reduces the number of iterations required by the multigrid smoother. Furthermore, the divergence correction technique is employed to further speed up the convergence of the multigrid method. Numerical examples including problems with high-contrast discontinuous coefficients are presented to validate the effectiveness of the proposed EXCMG method. The edge-based EXCMG method is more efficient than the auxiliary-space Maxwell solver (AMS) for definite problems in the considered geometrical configuration, and it can also efficiently solve large-scale indefinite problems encountered in engineering and scientific fields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.