带变阶分数导数的椭圆方程有限差分法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Siyuan Shi, Zhaopeng Hao, Rui Du
{"title":"带变阶分数导数的椭圆方程有限差分法","authors":"Siyuan Shi, Zhaopeng Hao, Rui Du","doi":"10.1007/s11075-024-01922-9","DOIUrl":null,"url":null,"abstract":"<p>An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2013 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite difference method for elliptic equations with the variable-order fractional derivative\",\"authors\":\"Siyuan Shi, Zhaopeng Hao, Rui Du\",\"doi\":\"10.1007/s11075-024-01922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01922-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01922-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了变阶黎曼-黎奥维尔导数多维微分方程的高效有限差分法。首先,我们利用生成函数近似理论构建了多维变阶黎曼-黎乌韦尔导数的高效离散近似。分析了离散算子在巴伦空间的收敛性。在此基础上,我们提出了变阶黎曼-黎乌韦尔导数椭圆方程的有限差分法。该方法的稳定性和收敛性通过最大值原理得到了证明。此外,在计算中还提出了基于快速傅立叶变换和多网格算法的快速求解器,以分别减少存储量和加快 BiCGSTAB 方法的速度。我们将这种方法扩展到时变问题,几个数值实例表明,所提出的方案和快速求解器是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A finite difference method for elliptic equations with the variable-order fractional derivative

A finite difference method for elliptic equations with the variable-order fractional derivative

An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信