四元不定最小二乘问题的有效实结构保留算法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Zixiang Meng, Zhihan Zhou, Ying Li, Fengxia Zhang
{"title":"四元不定最小二乘问题的有效实结构保留算法","authors":"Zixiang Meng, Zhihan Zhou, Ying Li, Fengxia Zhang","doi":"10.1007/s11075-024-01929-2","DOIUrl":null,"url":null,"abstract":"<p>This paper concentrates on the quaternion indefinite least squares (QILS) problem. Firstly, we define the quaternion J-unitary matrix and the quaternion hyperbolic Givens rotation, and study their properties. Then, based on these, we investigate the quaternion hyperbolic QR factorization, and purpose its real structure-preserving (SP) algorithm by the real representation (Q-RR) matrix of the quaternion matrix. Immediately after, we explore the solution of the QILS problem, and give a real SP algorithm of solving the QILS problem. Eventually, to illustrate the effectiveness of proposed algorithms, we offer numerical examples.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"59 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective real structure-preserving algorithm for the quaternion indefinite least squares problem\",\"authors\":\"Zixiang Meng, Zhihan Zhou, Ying Li, Fengxia Zhang\",\"doi\":\"10.1007/s11075-024-01929-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper concentrates on the quaternion indefinite least squares (QILS) problem. Firstly, we define the quaternion J-unitary matrix and the quaternion hyperbolic Givens rotation, and study their properties. Then, based on these, we investigate the quaternion hyperbolic QR factorization, and purpose its real structure-preserving (SP) algorithm by the real representation (Q-RR) matrix of the quaternion matrix. Immediately after, we explore the solution of the QILS problem, and give a real SP algorithm of solving the QILS problem. Eventually, to illustrate the effectiveness of proposed algorithms, we offer numerical examples.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01929-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01929-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究四元数不定最小二乘(QILS)问题。首先,我们定义了四元数 J 单位矩阵和四元数双曲 Givens 旋转,并研究了它们的性质。在此基础上,我们研究了四元双曲 QR 因式分解,并通过四元矩阵的实表示(Q-RR)矩阵实现了其实结构保留(SP)算法。紧接着,我们探讨了 QILS 问题的求解,并给出了求解 QILS 问题的实 SP 算法。最后,为了说明所提算法的有效性,我们提供了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An effective real structure-preserving algorithm for the quaternion indefinite least squares problem

An effective real structure-preserving algorithm for the quaternion indefinite least squares problem

This paper concentrates on the quaternion indefinite least squares (QILS) problem. Firstly, we define the quaternion J-unitary matrix and the quaternion hyperbolic Givens rotation, and study their properties. Then, based on these, we investigate the quaternion hyperbolic QR factorization, and purpose its real structure-preserving (SP) algorithm by the real representation (Q-RR) matrix of the quaternion matrix. Immediately after, we explore the solution of the QILS problem, and give a real SP algorithm of solving the QILS problem. Eventually, to illustrate the effectiveness of proposed algorithms, we offer numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信