具有超线性片断连续漂移和霍尔德扩散系数的 SDE 的部分截断欧拉-Maruyama 方法的收敛性

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Amir Haghighi
{"title":"具有超线性片断连续漂移和霍尔德扩散系数的 SDE 的部分截断欧拉-Maruyama 方法的收敛性","authors":"Amir Haghighi","doi":"10.1007/s11075-024-01928-3","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of this paper is to develop and analyze a partially truncated Euler-Maruyama method for numerically solving SDEs with super-linear piecewise continuous drift coefficients and <span>\\(\\varvec{(1/2+\\alpha )}\\)</span>-Hölder diffusion coefficients (PTEMH), for <span>\\(\\varvec{\\alpha \\in [0,1/2]}\\)</span>. We first present an analytical form for the unique solution of such problems. Then we establish the strong convergence theory of the PTEMH scheme. We show that the convergence rate of the proposed method in the case <span>\\(\\varvec{\\alpha \\in (0,1/2]}\\)</span> reaches <span>\\(\\varvec{\\alpha }\\)</span>, which is optimal compared to the explicit Euler-Maruyama method. Finally, numerical results are given to confirm the theoretical convergence rate.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"29 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of a partially truncated Euler-Maruyama method for SDEs with super-linear piecewise continuous drift and Hölder diffusion coefficients\",\"authors\":\"Amir Haghighi\",\"doi\":\"10.1007/s11075-024-01928-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main purpose of this paper is to develop and analyze a partially truncated Euler-Maruyama method for numerically solving SDEs with super-linear piecewise continuous drift coefficients and <span>\\\\(\\\\varvec{(1/2+\\\\alpha )}\\\\)</span>-Hölder diffusion coefficients (PTEMH), for <span>\\\\(\\\\varvec{\\\\alpha \\\\in [0,1/2]}\\\\)</span>. We first present an analytical form for the unique solution of such problems. Then we establish the strong convergence theory of the PTEMH scheme. We show that the convergence rate of the proposed method in the case <span>\\\\(\\\\varvec{\\\\alpha \\\\in (0,1/2]}\\\\)</span> reaches <span>\\\\(\\\\varvec{\\\\alpha }\\\\)</span>, which is optimal compared to the explicit Euler-Maruyama method. Finally, numerical results are given to confirm the theoretical convergence rate.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01928-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01928-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是开发和分析一种部分截断的 Euler-Maruyama 方法,用于数值求解具有超线性片断连续漂移系数和 \(\varvec{(1/2+\alpha )})-Hölder 扩散系数(PTEMH)的 SDEs,对于 \(\varvec{\alpha \in [0,1/2]}\).我们首先给出了此类问题唯一解的解析形式。然后,我们建立了 PTEMH 方案的强收敛理论。我们表明,在 \(\varvec\{alpha \in (0,1/2]}\) 的情况下,所提出方法的收敛速率达到了 \(\varvec\{alpha }\) ,这与显式 Euler-Maruyama 方法相比是最优的。最后,给出的数值结果证实了理论上的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Convergence of a partially truncated Euler-Maruyama method for SDEs with super-linear piecewise continuous drift and Hölder diffusion coefficients

Convergence of a partially truncated Euler-Maruyama method for SDEs with super-linear piecewise continuous drift and Hölder diffusion coefficients

The main purpose of this paper is to develop and analyze a partially truncated Euler-Maruyama method for numerically solving SDEs with super-linear piecewise continuous drift coefficients and \(\varvec{(1/2+\alpha )}\)-Hölder diffusion coefficients (PTEMH), for \(\varvec{\alpha \in [0,1/2]}\). We first present an analytical form for the unique solution of such problems. Then we establish the strong convergence theory of the PTEMH scheme. We show that the convergence rate of the proposed method in the case \(\varvec{\alpha \in (0,1/2]}\) reaches \(\varvec{\alpha }\), which is optimal compared to the explicit Euler-Maruyama method. Finally, numerical results are given to confirm the theoretical convergence rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信