基于拉顿投影的多变量多项式插值法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Nguyen Anh Ngoc, Nguyen Van Khiem, Tang Van Long, Phung Van Manh
{"title":"基于拉顿投影的多变量多项式插值法","authors":"Nguyen Anh Ngoc, Nguyen Van Khiem, Tang Van Long, Phung Van Manh","doi":"10.1007/s11075-024-01938-1","DOIUrl":null,"url":null,"abstract":"<p>We study multivariate polynomial interpolation based on Radon projections corresponding to the intersection of hyperplanes and the coordinate axes of <span>\\(\\mathbb {R}^n\\)</span>. We give a characterization of these hyperplanes which determine an interpolation polynomial uniquely. We also establish conditions such that the interpolation projectors based on Radon projections converge to the Taylor projector.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"29 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate polynomial interpolation based on Radon projections\",\"authors\":\"Nguyen Anh Ngoc, Nguyen Van Khiem, Tang Van Long, Phung Van Manh\",\"doi\":\"10.1007/s11075-024-01938-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study multivariate polynomial interpolation based on Radon projections corresponding to the intersection of hyperplanes and the coordinate axes of <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. We give a characterization of these hyperplanes which determine an interpolation polynomial uniquely. We also establish conditions such that the interpolation projectors based on Radon projections converge to the Taylor projector.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01938-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01938-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们基于超平面与 \mathbb {R}^n\ 的坐标轴交点对应的 Radon 投影研究多变量多项式插值。我们给出了这些超平面的特征,它们唯一地决定了插值多项式。我们还建立了基于 Radon 投影的插值投影收敛于泰勒投影的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivariate polynomial interpolation based on Radon projections

Multivariate polynomial interpolation based on Radon projections

We study multivariate polynomial interpolation based on Radon projections corresponding to the intersection of hyperplanes and the coordinate axes of \(\mathbb {R}^n\). We give a characterization of these hyperplanes which determine an interpolation polynomial uniquely. We also establish conditions such that the interpolation projectors based on Radon projections converge to the Taylor projector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信