函数域上簕杜鹃自动表征的循环基变化

IF 1.3 1区 数学 Q1 MATHEMATICS
Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne
{"title":"函数域上簕杜鹃自动表征的循环基变化","authors":"Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne","doi":"10.1112/s0010437x24007243","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> be a split semisimple group over a global function field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span>. Given a cuspidal automorphic representation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> satisfying a technical hypothesis, we prove that for almost all primes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span>, there is a cyclic base change lifting of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi$</span></span></img></span></span> along any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}/\\ell \\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span>. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> over a local function field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>, and almost all primes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span>, any irreducible admissible representation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$G(F)$</span></span></img></span></span> admits a base change along any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}/\\ell \\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"149 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic base change of cuspidal automorphic representations over function fields\",\"authors\":\"Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne\",\"doi\":\"10.1112/s0010437x24007243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> be a split semisimple group over a global function field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span>. Given a cuspidal automorphic representation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> satisfying a technical hypothesis, we prove that for almost all primes <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span>, there is a cyclic base change lifting of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi$</span></span></img></span></span> along any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}/\\\\ell \\\\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span>. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> over a local function field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>, and almost all primes <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span>, any irreducible admissible representation of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G(F)$</span></span></img></span></span> admits a base change along any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}/\\\\ell \\\\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007243\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 是一个全局函数域 $K$ 上的分裂半简单群。给定一个满足技术假设的$G$的尖顶自变表示$\Pi$,我们证明对于几乎所有的素数$\ell$,沿着$K$的任何$\mathbb {Z}/\ell \mathbb {Z}$-扩展,都存在着$\Pi$的循环基变提升。我们的证明并不依赖于任何迹公式;相反,它是基于使用模块性提升定理,再加上斯密理论论证,来获得残差表示的基底变化。作为应用,我们还证明了对于本地函数域 $F 上的任何分裂半简单群 $G$,以及几乎所有素数 $\ell$,$G(F)$ 的任何不可还原可容许表示都会沿着 $F$ 的任何 $\mathbb {Z}/\ell \mathbb {Z}$ 扩展发生基底变化。最后,我们更明确地描述了陈和艾的研究中所考虑的一类环状表示的局部基底变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic base change of cuspidal automorphic representations over function fields

Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信