Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne
{"title":"函数域上簕杜鹃自动表征的循环基变化","authors":"Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne","doi":"10.1112/s0010437x24007243","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> be a split semisimple group over a global function field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span>. Given a cuspidal automorphic representation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> satisfying a technical hypothesis, we prove that for almost all primes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span>, there is a cyclic base change lifting of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi$</span></span></img></span></span> along any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}/\\ell \\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span>. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> over a local function field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>, and almost all primes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span>, any irreducible admissible representation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$G(F)$</span></span></img></span></span> admits a base change along any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}/\\ell \\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"149 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic base change of cuspidal automorphic representations over function fields\",\"authors\":\"Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne\",\"doi\":\"10.1112/s0010437x24007243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> be a split semisimple group over a global function field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span>. Given a cuspidal automorphic representation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> satisfying a technical hypothesis, we prove that for almost all primes <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span>, there is a cyclic base change lifting of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi$</span></span></img></span></span> along any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}/\\\\ell \\\\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span>. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> over a local function field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>, and almost all primes <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span>, any irreducible admissible representation of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G(F)$</span></span></img></span></span> admits a base change along any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}/\\\\ell \\\\mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007243\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cyclic base change of cuspidal automorphic representations over function fields
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.