哈密顿∐n BO(n)作用、分层莫尔斯理论和 J 同态性

IF 1.3 1区 数学 Q1 MATHEMATICS
Xin Jin
{"title":"哈密顿∐n BO(n)作用、分层莫尔斯理论和 J 同态性","authors":"Xin Jin","doi":"10.1112/s0010437x24007279","DOIUrl":null,"url":null,"abstract":"<p>We use sheaves of spectra to quantize a Hamiltonian <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\coprod _n BO(n)$</span></span></img></span></span>-action on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\varinjlim _{N}T^*\\mathbf {R}^N$</span></span></img></span></span> that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [<span>A study in derived algebraic geometry, vol. I. Correspondences and duality</span>, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-homomorphism. This provides a key step in the work of Jin [<span>Microlocal sheaf categories and the</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span><span>-homomorphism</span>, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [<span>Brane structures in microlocal sheaf theory</span>, J. Topol. <span>17</span> (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$L\\subset T^*\\mathbf {R}^N$</span></span></img></span></span> is given by the composition of the stable Gauss map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$L\\rightarrow U/O$</span></span></img></span></span> and the delooping of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-homomorphism <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$U/O\\rightarrow B\\mathrm {Pic}(\\mathbf {S})$</span></span></img></span></span>. We put special emphasis on the functoriality and (symmetric) monoidal structures of the categories involved and, as a byproduct, we produce several concrete constructions of (commutative) algebra/module objects and (right-lax) morphisms between them in the (symmetric) monoidal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$(\\infty, 2)$</span></span></img></span></span>-category of correspondences, generalizing the construction out of Segal objects of Gaitsgory and Rozenblyum, which might be of independent interest.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hamiltonian ∐n BO(n)-action, stratified Morse theory and the J-homomorphism\",\"authors\":\"Xin Jin\",\"doi\":\"10.1112/s0010437x24007279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use sheaves of spectra to quantize a Hamiltonian <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\coprod _n BO(n)$</span></span></img></span></span>-action on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varinjlim _{N}T^*\\\\mathbf {R}^N$</span></span></img></span></span> that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [<span>A study in derived algebraic geometry, vol. I. Correspondences and duality</span>, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$J$</span></span></img></span></span>-homomorphism. This provides a key step in the work of Jin [<span>Microlocal sheaf categories and the</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$J$</span></span></img></span></span><span>-homomorphism</span>, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [<span>Brane structures in microlocal sheaf theory</span>, J. Topol. <span>17</span> (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L\\\\subset T^*\\\\mathbf {R}^N$</span></span></img></span></span> is given by the composition of the stable Gauss map <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L\\\\rightarrow U/O$</span></span></img></span></span> and the delooping of the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$J$</span></span></img></span></span>-homomorphism <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U/O\\\\rightarrow B\\\\mathrm {Pic}(\\\\mathbf {S})$</span></span></img></span></span>. We put special emphasis on the functoriality and (symmetric) monoidal structures of the categories involved and, as a byproduct, we produce several concrete constructions of (commutative) algebra/module objects and (right-lax) morphisms between them in the (symmetric) monoidal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\infty, 2)$</span></span></img></span></span>-category of correspondences, generalizing the construction out of Segal objects of Gaitsgory and Rozenblyum, which might be of independent interest.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007279\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007279","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用谱的剪切来量化 $\coprod _n BO(n)$ 作用在 $\varinjlim _{N}T^*\mathbf {R}^N$ 上的哈密顿$\coprod _n BO(n)$作用,这个作用自然来自底周期性。我们采用盖茨戈里和罗曾布利姆开发的对应范畴[《派生代数几何研究》,第一卷。对应性与对偶性,《数学概览与专著》,第 221 卷(美国数学会,2017 年)],通过 $J$ 同构给出了分层莫尔斯理论的丰富性。这为 Jin [Microlocal sheaf categories and the $J$-homorphism, Preprint (2020), arXiv:2004.14270v4] 和 Treumann [Brane structures in microlocal sheaf theory, J. Topol.17 (2024), e12325]:在一个(沉浸的)精确拉格朗日子曼弗雷德 $Lsubset T^*\mathbf {R}^N$ 上的本地系统的布勒结构的分类映射是由稳定的高斯映射 $L\rightarrow U/O$ 和 $J$ 同构的脱弯 $U/O\rightarrow B\mathrm {Pic}(\mathbf {S})$ 的组合给出的。我们特别强调了所涉及范畴的函数性和(对称)一元结构,作为副产品,我们在(对称)一元的$(\infty, 2)$对应范畴中产生了(交换)代数/模块对象和它们之间(右涣散)形态的几个具体构造,概括了盖茨戈里和罗曾布利姆的西格尔对象的构造,这可能会引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hamiltonian ∐n BO(n)-action, stratified Morse theory and the J-homomorphism

We use sheaves of spectra to quantize a Hamiltonian $\coprod _n BO(n)$-action on $\varinjlim _{N}T^*\mathbf {R}^N$ that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [A study in derived algebraic geometry, vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the $J$-homomorphism. This provides a key step in the work of Jin [Microlocal sheaf categories and the $J$-homomorphism, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [Brane structures in microlocal sheaf theory, J. Topol. 17 (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold $L\subset T^*\mathbf {R}^N$ is given by the composition of the stable Gauss map $L\rightarrow U/O$ and the delooping of the $J$-homomorphism $U/O\rightarrow B\mathrm {Pic}(\mathbf {S})$. We put special emphasis on the functoriality and (symmetric) monoidal structures of the categories involved and, as a byproduct, we produce several concrete constructions of (commutative) algebra/module objects and (right-lax) morphisms between them in the (symmetric) monoidal $(\infty, 2)$-category of correspondences, generalizing the construction out of Segal objects of Gaitsgory and Rozenblyum, which might be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信