{"title":"求弱不可还原非负对称张量谱半径的类幂方法","authors":"Xueli Bai, Dong-Hui Li, Lei Wu, Jiefeng Xu","doi":"10.1007/s10589-024-00601-8","DOIUrl":null,"url":null,"abstract":"<p>The Perron–Frobenius theorem says that the spectral radius of a weakly irreducible nonnegative tensor is the unique positive eigenvalue corresponding to a positive eigenvector. With this fact in mind, the purpose of this paper is to find the spectral radius and its corresponding positive eigenvector of a weakly irreducible nonnegative symmetric tensor. By transforming the eigenvalue problem into an equivalent problem of minimizing a concave function on a closed convex set, we derive a simpler and cheaper iterative method called power-like method, which is well-defined. Furthermore, we show that both sequences of the eigenvalue estimates and the eigenvector evaluations generated by the power-like method <i>Q</i>-linearly converge to the spectral radius and its corresponding eigenvector, respectively. To accelerate the method, we introduce a line search technique. The improved method retains the same convergence property as the original version. Plentiful numerical results show that the improved method performs quite well.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A power-like method for finding the spectral radius of a weakly irreducible nonnegative symmetric tensor\",\"authors\":\"Xueli Bai, Dong-Hui Li, Lei Wu, Jiefeng Xu\",\"doi\":\"10.1007/s10589-024-00601-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Perron–Frobenius theorem says that the spectral radius of a weakly irreducible nonnegative tensor is the unique positive eigenvalue corresponding to a positive eigenvector. With this fact in mind, the purpose of this paper is to find the spectral radius and its corresponding positive eigenvector of a weakly irreducible nonnegative symmetric tensor. By transforming the eigenvalue problem into an equivalent problem of minimizing a concave function on a closed convex set, we derive a simpler and cheaper iterative method called power-like method, which is well-defined. Furthermore, we show that both sequences of the eigenvalue estimates and the eigenvector evaluations generated by the power-like method <i>Q</i>-linearly converge to the spectral radius and its corresponding eigenvector, respectively. To accelerate the method, we introduce a line search technique. The improved method retains the same convergence property as the original version. Plentiful numerical results show that the improved method performs quite well.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00601-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00601-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A power-like method for finding the spectral radius of a weakly irreducible nonnegative symmetric tensor
The Perron–Frobenius theorem says that the spectral radius of a weakly irreducible nonnegative tensor is the unique positive eigenvalue corresponding to a positive eigenvector. With this fact in mind, the purpose of this paper is to find the spectral radius and its corresponding positive eigenvector of a weakly irreducible nonnegative symmetric tensor. By transforming the eigenvalue problem into an equivalent problem of minimizing a concave function on a closed convex set, we derive a simpler and cheaper iterative method called power-like method, which is well-defined. Furthermore, we show that both sequences of the eigenvalue estimates and the eigenvector evaluations generated by the power-like method Q-linearly converge to the spectral radius and its corresponding eigenvector, respectively. To accelerate the method, we introduce a line search technique. The improved method retains the same convergence property as the original version. Plentiful numerical results show that the improved method performs quite well.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.