基于牛顿-CG 的一般非凸圆锥优化的障碍增强拉格朗日方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chuan He, Heng Huang, Zhaosong Lu
{"title":"基于牛顿-CG 的一般非凸圆锥优化的障碍增强拉格朗日方法","authors":"Chuan He, Heng Huang, Zhaosong Lu","doi":"10.1007/s10589-024-00603-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of <span>\\({\\widetilde{{{\\,\\mathrm{\\mathcal {O}}\\,}}}}(\\epsilon ^{-11/2})\\)</span> and an operation complexity of <span>\\({\\widetilde{{{\\,\\mathrm{\\mathcal {O}}\\,}}}}(\\epsilon ^{-11/2}\\min \\{n,\\epsilon ^{-5/4}\\})\\)</span> for finding an <span>\\((\\epsilon ,\\sqrt{\\epsilon })\\)</span>-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to <span>\\({\\widetilde{{{\\,\\mathrm{\\mathcal {O}}\\,}}}}(\\epsilon ^{-7/2})\\)</span> and <span>\\({\\widetilde{{{\\,\\mathrm{\\mathcal {O}}\\,}}}}(\\epsilon ^{-7/2}\\min \\{n,\\epsilon ^{-3/4}\\})\\)</span>, respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization\",\"authors\":\"Chuan He, Heng Huang, Zhaosong Lu\",\"doi\":\"10.1007/s10589-024-00603-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of <span>\\\\({\\\\widetilde{{{\\\\,\\\\mathrm{\\\\mathcal {O}}\\\\,}}}}(\\\\epsilon ^{-11/2})\\\\)</span> and an operation complexity of <span>\\\\({\\\\widetilde{{{\\\\,\\\\mathrm{\\\\mathcal {O}}\\\\,}}}}(\\\\epsilon ^{-11/2}\\\\min \\\\{n,\\\\epsilon ^{-5/4}\\\\})\\\\)</span> for finding an <span>\\\\((\\\\epsilon ,\\\\sqrt{\\\\epsilon })\\\\)</span>-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to <span>\\\\({\\\\widetilde{{{\\\\,\\\\mathrm{\\\\mathcal {O}}\\\\,}}}}(\\\\epsilon ^{-7/2})\\\\)</span> and <span>\\\\({\\\\widetilde{{{\\\\,\\\\mathrm{\\\\mathcal {O}}\\\\,}}}}(\\\\epsilon ^{-7/2}\\\\min \\\\{n,\\\\epsilon ^{-3/4}\\\\})\\\\)</span>, respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00603-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00603-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑寻找一般非凸圆锥优化问题的近似二阶静止点(SOSP),即在非线性相等约束和凸圆锥约束下最小化二次微分函数。我们特别提出了一种基于牛顿-共轭梯度(Newton-CG)的障碍增量拉格朗日方法,用于寻找该问题的近似 SOSP。在一些温和的假设条件下,我们证明了我们的方法内部迭代总复杂度为({\widetilde{{\mathrm{mathcal {O}}\,}}}}(\epsilon ^{-11/2})\),运算复杂度为({\widetilde{{\mathrm{mathcal {O}}\,}}}}(\epsilon ^{-11/2})\)、\((\epsilon,\sqrt\epsilon })\)-SOSP的一般非凸圆锥优化的高概率。此外,在一个约束条件下,这些复杂度边界被改进为({\widetilde{{\,\mathrm\mathcal {O}}\、}}}}(\epsilon ^{-7/2})\) 和 ({\widetilde{{\,\mathrm{mathcal {O}}\,}}}}(\epsilon ^{-7/2}\min \{n,\epsilon^{-3/4}}))。据我们所知,这是首次研究一般非凸圆锥优化的近似 SOSP 的复杂性。本文给出了初步的数值结果,证明了所提出的方法在求解质量上优于一阶方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization

A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization

In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of \({\widetilde{{{\,\mathrm{\mathcal {O}}\,}}}}(\epsilon ^{-11/2})\) and an operation complexity of \({\widetilde{{{\,\mathrm{\mathcal {O}}\,}}}}(\epsilon ^{-11/2}\min \{n,\epsilon ^{-5/4}\})\) for finding an \((\epsilon ,\sqrt{\epsilon })\)-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to \({\widetilde{{{\,\mathrm{\mathcal {O}}\,}}}}(\epsilon ^{-7/2})\) and \({\widetilde{{{\,\mathrm{\mathcal {O}}\,}}}}(\epsilon ^{-7/2}\min \{n,\epsilon ^{-3/4}\})\), respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信