G. A. Carrizo, N. S. Fazzio, M. D. Sánchez, M. L. Schuverdt
{"title":"多目标问题的 Scaled-PAKKT 顺序最优条件及其在增强拉格朗日法中的应用","authors":"G. A. Carrizo, N. S. Fazzio, M. D. Sánchez, M. L. Schuverdt","doi":"10.1007/s10589-024-00605-4","DOIUrl":null,"url":null,"abstract":"<p>Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"59 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method\",\"authors\":\"G. A. Carrizo, N. S. Fazzio, M. D. Sánchez, M. L. Schuverdt\",\"doi\":\"10.1007/s10589-024-00605-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00605-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00605-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method
Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.