{"title":"改进的代数纤维","authors":"Sam P. Fisher","doi":"10.1112/s0010437x24007309","DOIUrl":null,"url":null,"abstract":"<p>We show that a virtually residually finite rationally solvable (RFRS) group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathtt {FP}_n(\\mathbb {Q})$</span></span></img></span></span> virtually algebraically fibres with kernel of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathtt {FP}_n(\\mathbb {Q})$</span></span></img></span></span> if and only if the first <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell ^2$</span></span></img></span></span>-Betti numbers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> vanish, that is, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$b_p^{(2)}(G) = 0$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$0 \\leqslant p \\leqslant n$</span></span></img></span></span>. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathtt {FP}(\\mathbb {Q})$</span></span></img></span></span> are virtually Abelian. It then follows that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> is a virtually RFRS group of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathtt {FP}(\\mathbb {Q})$</span></span></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z} G$</span></span></span></span> is Noetherian, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$G$</span></span></span></span> is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathtt {FP}(\\mathbb {Q})$</span></span></span></span>, which includes (for instance) the class of virtually compact special groups.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"59 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved algebraic fibrings\",\"authors\":\"Sam P. Fisher\",\"doi\":\"10.1112/s0010437x24007309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a virtually residually finite rationally solvable (RFRS) group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathtt {FP}_n(\\\\mathbb {Q})$</span></span></img></span></span> virtually algebraically fibres with kernel of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathtt {FP}_n(\\\\mathbb {Q})$</span></span></img></span></span> if and only if the first <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell ^2$</span></span></img></span></span>-Betti numbers of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> vanish, that is, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$b_p^{(2)}(G) = 0$</span></span></img></span></span> for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0 \\\\leqslant p \\\\leqslant n$</span></span></img></span></span>. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathtt {FP}(\\\\mathbb {Q})$</span></span></img></span></span> are virtually Abelian. It then follows that if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> is a virtually RFRS group of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathtt {FP}(\\\\mathbb {Q})$</span></span></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z} G$</span></span></span></span> is Noetherian, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></span></span> is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathtt {FP}(\\\\mathbb {Q})$</span></span></span></span>, which includes (for instance) the class of virtually compact special groups.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007309\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007309","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$$\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.