星际介质中的复杂电磁学和耦合引力电磁波

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
M R Villarreal Fasanelli and J Seo
{"title":"星际介质中的复杂电磁学和耦合引力电磁波","authors":"M R Villarreal Fasanelli and J Seo","doi":"10.1088/1402-4896/ad75d1","DOIUrl":null,"url":null,"abstract":"Gravito-electromagnetism is an approximation of general relativity that has significant analogies to electromagnetism. We show that the remained asymmetry in those two field equations and the equations of motion can be alleviated through appropriate scaling on the complex plane, thereby allowing gravity and electromagnetism to be combined into a single set of equations for analysis. This enables a more concise and intuitive interpretation of mixed-field interactions of the interstellar medium. The interstellar medium, composed of ionized gas, interacts with both gravitational and electromagnetic fields, and within this medium, gravitational and electromagnetic waves exist in a coupled form. We derive the dispersion relation of these coupled waves tied by the interstellar medium and discuss two branches of wave solutions. These two solutions correspond to the well-known pure gravitational and electromagnetic waves in the classical limit. Based on the characteristics of this coupled wave, we discuss the possible generation of gravitational waves in the interstellar medium and the abnormal behaviors in a medium composed of dark matter that may provide a new methodology for dark matter detection.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"147 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex electromagnetism and coupled gravitational-electromagnetic waves in the interstellar medium\",\"authors\":\"M R Villarreal Fasanelli and J Seo\",\"doi\":\"10.1088/1402-4896/ad75d1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravito-electromagnetism is an approximation of general relativity that has significant analogies to electromagnetism. We show that the remained asymmetry in those two field equations and the equations of motion can be alleviated through appropriate scaling on the complex plane, thereby allowing gravity and electromagnetism to be combined into a single set of equations for analysis. This enables a more concise and intuitive interpretation of mixed-field interactions of the interstellar medium. The interstellar medium, composed of ionized gas, interacts with both gravitational and electromagnetic fields, and within this medium, gravitational and electromagnetic waves exist in a coupled form. We derive the dispersion relation of these coupled waves tied by the interstellar medium and discuss two branches of wave solutions. These two solutions correspond to the well-known pure gravitational and electromagnetic waves in the classical limit. Based on the characteristics of this coupled wave, we discuss the possible generation of gravitational waves in the interstellar medium and the abnormal behaviors in a medium composed of dark matter that may provide a new methodology for dark matter detection.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad75d1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad75d1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

引力-电磁学是广义相对论的近似,与电磁学有着重要的相似性。我们的研究表明,这两个场方程和运动方程中仍然存在的不对称问题可以通过在复平面上的适当缩放得到缓解,从而使引力和电磁学可以合并为一组方程进行分析。这使得对星际介质混合场相互作用的解释更加简洁直观。星际介质由电离气体组成,同时与引力场和电磁场相互作用,在这种介质中,引力波和电磁波以耦合的形式存在。我们推导了这些被星际介质束缚的耦合波的色散关系,并讨论了波解的两个分支。这两种解对应于众所周知的经典极限下的纯引力波和电磁波。根据这种耦合波的特征,我们讨论了引力波在星际介质中的可能产生,以及在由暗物质组成的介质中的异常行为,这可能为暗物质探测提供一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex electromagnetism and coupled gravitational-electromagnetic waves in the interstellar medium
Gravito-electromagnetism is an approximation of general relativity that has significant analogies to electromagnetism. We show that the remained asymmetry in those two field equations and the equations of motion can be alleviated through appropriate scaling on the complex plane, thereby allowing gravity and electromagnetism to be combined into a single set of equations for analysis. This enables a more concise and intuitive interpretation of mixed-field interactions of the interstellar medium. The interstellar medium, composed of ionized gas, interacts with both gravitational and electromagnetic fields, and within this medium, gravitational and electromagnetic waves exist in a coupled form. We derive the dispersion relation of these coupled waves tied by the interstellar medium and discuss two branches of wave solutions. These two solutions correspond to the well-known pure gravitational and electromagnetic waves in the classical limit. Based on the characteristics of this coupled wave, we discuss the possible generation of gravitational waves in the interstellar medium and the abnormal behaviors in a medium composed of dark matter that may provide a new methodology for dark matter detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Scripta
Physica Scripta 物理-物理:综合
CiteScore
3.70
自引率
3.40%
发文量
782
审稿时长
4.5 months
期刊介绍: Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed: -Atomic, molecular and optical physics- Plasma physics- Condensed matter physics- Mathematical physics- Astrophysics- High energy physics- Nuclear physics- Nonlinear physics. The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信