基于响应面法(RSM)的拉瓦尔氢气喷嘴优化设计

Jianyang Fang, Yusheng Ju, Liwei Mao, Shichao Pei
{"title":"基于响应面法(RSM)的拉瓦尔氢气喷嘴优化设计","authors":"Jianyang Fang, Yusheng Ju, Liwei Mao, Shichao Pei","doi":"10.1088/1742-6596/2838/1/012035","DOIUrl":null,"url":null,"abstract":"To conduct an in-depth study of the injection characteristics of gas fuels, the structural parameters of the nozzle are optimized. Utilizing the Response Surface Method (RSM), this study selects an inlet radius <italic toggle=\"yes\">R<sub>1</sub></italic>, outlet radius <italic toggle=\"yes\">R<sub>2</sub></italic>, throat straight radius <italic toggle=\"yes\">R<sub>0</sub></italic>, expansion half angle <italic toggle=\"yes\">θ</italic>, and contraction half angle <italic toggle=\"yes\">α</italic> as design parameters. Based on the validated numerical model, a response surface prediction model for outlet velocity <italic toggle=\"yes\">v</italic> and mass flow rate <italic toggle=\"yes\">Q</italic> is established. Using the derived expressions, the contribution and interactive effects of design variables on response variables are analyzed. The findings indicate that the outlet radius and throat radius significantly affect the outlet velocity. The outlet radius positively correlates with the outlet velocity, while the throat radius negatively correlates with it. The mass flow rate is most significantly influenced by the throat radius, increasing with its increase. With outlet velocity and mass flow rate as optimization objectives, the MOGA algorithm is applied for multi-objective optimization. The optimization results indicate that the optimized structural parameters increased the centrifugal nozzle’s atomization cone angle and mass flow rate by 1.86% and 27.4%, respectively.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization design of hydrogen Laval nozzle based on response surface methodology (RSM)\",\"authors\":\"Jianyang Fang, Yusheng Ju, Liwei Mao, Shichao Pei\",\"doi\":\"10.1088/1742-6596/2838/1/012035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To conduct an in-depth study of the injection characteristics of gas fuels, the structural parameters of the nozzle are optimized. Utilizing the Response Surface Method (RSM), this study selects an inlet radius <italic toggle=\\\"yes\\\">R<sub>1</sub></italic>, outlet radius <italic toggle=\\\"yes\\\">R<sub>2</sub></italic>, throat straight radius <italic toggle=\\\"yes\\\">R<sub>0</sub></italic>, expansion half angle <italic toggle=\\\"yes\\\">θ</italic>, and contraction half angle <italic toggle=\\\"yes\\\">α</italic> as design parameters. Based on the validated numerical model, a response surface prediction model for outlet velocity <italic toggle=\\\"yes\\\">v</italic> and mass flow rate <italic toggle=\\\"yes\\\">Q</italic> is established. Using the derived expressions, the contribution and interactive effects of design variables on response variables are analyzed. The findings indicate that the outlet radius and throat radius significantly affect the outlet velocity. The outlet radius positively correlates with the outlet velocity, while the throat radius negatively correlates with it. The mass flow rate is most significantly influenced by the throat radius, increasing with its increase. With outlet velocity and mass flow rate as optimization objectives, the MOGA algorithm is applied for multi-objective optimization. The optimization results indicate that the optimized structural parameters increased the centrifugal nozzle’s atomization cone angle and mass flow rate by 1.86% and 27.4%, respectively.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2838/1/012035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了深入研究气体燃料的喷射特性,对喷嘴的结构参数进行了优化。利用响应面法(RSM),本研究选择了入口半径 R1、出口半径 R2、喉直半径 R0、膨胀半角 θ 和收缩半角 α 作为设计参数。根据验证的数值模型,建立了出口速度 v 和质量流量 Q 的响应面预测模型。利用推导出的表达式,分析了设计变量对响应变量的贡献和交互影响。结果表明,出口半径和喉管半径对出口速度有显著影响。出口半径与出口速度呈正相关,而喉管半径与出口速度呈负相关。质量流量受喉管半径的影响最大,随着喉管半径的增大而增大。以出口速度和质量流量为优化目标,采用 MOGA 算法进行多目标优化。优化结果表明,优化后的结构参数使离心喷嘴的雾化锥角和质量流量分别提高了 1.86% 和 27.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization design of hydrogen Laval nozzle based on response surface methodology (RSM)
To conduct an in-depth study of the injection characteristics of gas fuels, the structural parameters of the nozzle are optimized. Utilizing the Response Surface Method (RSM), this study selects an inlet radius R1, outlet radius R2, throat straight radius R0, expansion half angle θ, and contraction half angle α as design parameters. Based on the validated numerical model, a response surface prediction model for outlet velocity v and mass flow rate Q is established. Using the derived expressions, the contribution and interactive effects of design variables on response variables are analyzed. The findings indicate that the outlet radius and throat radius significantly affect the outlet velocity. The outlet radius positively correlates with the outlet velocity, while the throat radius negatively correlates with it. The mass flow rate is most significantly influenced by the throat radius, increasing with its increase. With outlet velocity and mass flow rate as optimization objectives, the MOGA algorithm is applied for multi-objective optimization. The optimization results indicate that the optimized structural parameters increased the centrifugal nozzle’s atomization cone angle and mass flow rate by 1.86% and 27.4%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信