Zhoujuan Cui, Wenshuo Peng, Yaqiang Zhang, Yiping Duan, Xiaoming Tao
{"title":"用于多代理轨迹预测的时空交互图神经网络","authors":"Zhoujuan Cui, Wenshuo Peng, Yaqiang Zhang, Yiping Duan, Xiaoming Tao","doi":"10.1088/1742-6596/2833/1/012010","DOIUrl":null,"url":null,"abstract":"For intelligent transportation systems, accurately forecasting the future trajectories of multiple agents is pivotal. Considering the increased diversity of agents within a scene, in order to capture and model the variations in their appearance, motion status, behavioral patterns, and interrelationships, we propose a simple yet effective framework based on Spatio-Temporal-Interaction Graph Neural Networks. Specifically, a Multi-Class Agent Encoder is meticulously tailored to the specific class of each agent to distill pertinent information from their motion attributes and historical trajectories. Subsequently, a Spatio-Temporal-Interaction Graph Attention Module is constructed to productively represent and learn the complex, dynamic interactions. Finally, a Multimodal Trajectory Generation Module is customized, and a learnable diversity sampling function is introduced to map the features of each agent to a set of potential variables, so as to capture the multimodal distribution of future trajectories. Empirical evaluations on the ETH/UCY and KITTI datasets reveal that our method can efficiently improve the accuracy of trajectory prediction.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal-Interaction Graph Neural Networks for Multi-Agent Trajectory Prediction\",\"authors\":\"Zhoujuan Cui, Wenshuo Peng, Yaqiang Zhang, Yiping Duan, Xiaoming Tao\",\"doi\":\"10.1088/1742-6596/2833/1/012010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For intelligent transportation systems, accurately forecasting the future trajectories of multiple agents is pivotal. Considering the increased diversity of agents within a scene, in order to capture and model the variations in their appearance, motion status, behavioral patterns, and interrelationships, we propose a simple yet effective framework based on Spatio-Temporal-Interaction Graph Neural Networks. Specifically, a Multi-Class Agent Encoder is meticulously tailored to the specific class of each agent to distill pertinent information from their motion attributes and historical trajectories. Subsequently, a Spatio-Temporal-Interaction Graph Attention Module is constructed to productively represent and learn the complex, dynamic interactions. Finally, a Multimodal Trajectory Generation Module is customized, and a learnable diversity sampling function is introduced to map the features of each agent to a set of potential variables, so as to capture the multimodal distribution of future trajectories. Empirical evaluations on the ETH/UCY and KITTI datasets reveal that our method can efficiently improve the accuracy of trajectory prediction.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2833/1/012010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2833/1/012010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-Temporal-Interaction Graph Neural Networks for Multi-Agent Trajectory Prediction
For intelligent transportation systems, accurately forecasting the future trajectories of multiple agents is pivotal. Considering the increased diversity of agents within a scene, in order to capture and model the variations in their appearance, motion status, behavioral patterns, and interrelationships, we propose a simple yet effective framework based on Spatio-Temporal-Interaction Graph Neural Networks. Specifically, a Multi-Class Agent Encoder is meticulously tailored to the specific class of each agent to distill pertinent information from their motion attributes and historical trajectories. Subsequently, a Spatio-Temporal-Interaction Graph Attention Module is constructed to productively represent and learn the complex, dynamic interactions. Finally, a Multimodal Trajectory Generation Module is customized, and a learnable diversity sampling function is introduced to map the features of each agent to a set of potential variables, so as to capture the multimodal distribution of future trajectories. Empirical evaluations on the ETH/UCY and KITTI datasets reveal that our method can efficiently improve the accuracy of trajectory prediction.